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Linear Algebra – Lesson 3 
Determinant, trace and the inverse matrix 

 
In the previous lesson, we talked about matrices, and how they can be thought of as representing linear 
transformation. We also talked about two important numbers that we can calculate for every matrix: its 
rank and nullity. We said that the rank is the dimension of the matrix image (or column space), and the 
nullity is the dimension of the matrix kernel (or null space). 
Today we will start by learning two additional important numbers that characterize a matrix: its 
determinant and its trace. 
Then we will see how we can use matrices to solve systems of linear equations. 
Finally, we will talk about how we can “undo” the transformation induced by a matrix, by calculating the 
inverse matrix. 
 
 
1. The determinant 
1.1 Geometrical explanation 
So far, when we looked at matrices, we thought of them as representing some linear transformation, 
and studied how they transform one vector into another vector. We could also think about how a matrix 
transform one shape to another. 
 
Definition: The determinant of a matrix A (denoted det(𝐴) or |𝐴|) is the signed scaling factor that the 
matrix induces. Similarly, the determinant of a matrix A is the signed volume of the unit parallelogram 
after applying A. 

𝐴𝑟𝑒𝑎 = |det (𝐴)| 
 
As you saw in the videos, the determinant can also be negative. This happens when the orientation of 
the coordinate system changes, for example when you flip one axis, or when you permute two axes. 
 
 
Example: Effect of rotation and scaling on the unit square: 

𝐴 = ቀ
2 2

−2 2
ቁ 

This transformation scales all the basis vectors by 2√2, and also rotates them by 90 degrees clockwise1. 
What would happen to the unit square after applying A? It will be rotated by 90 degrees clockwise, and 

its area will increase by ൫2√2൯
ଶ

= 8. 
 
 
Question: Let 𝐴 be an 𝑛 × 𝑛 matrix. What does it mean if det(𝐴) = 0? 
 

                                                           
1 You can see it like that: ቀ 2 2

−2 2
 ቁ = ቀ

2 0
0 2

 ቁ ቀ
1 1

−1 1
 ቁ. The first matrix just scales both axes by 2. The second 

matrix rotates by 45 degrees, and also scales vectors by √2 (think about the vector 𝚥̂, for example: it moved from 

ቀ
0
1

ቁ to ቀ1
1

ቁ, and now its length is √2. 
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Answer: A determinant of 0 means that the volume of the unit parallelogram after applying 𝐴 is 0. This 
will happen whenever the “effective” dimension of the parallelogram is lower than the original 

dimension. For example, look at 𝐴 = ቀ
1 −1
0 0

ቁ. This transformation takes any vector, and throws it to 

the horizontal line spanned by 𝚤̂. The area of the unit square will obviously become 0. 
Note that det(𝐴) = 0 means that the columns of 𝐴 are linearly dependent. 
 
1.2 Determinant properties 
Knowing how the determinant changes if we change the matrix is helpful for different calculations: 
 The determinant is only defined for square matrices 
 det(𝐼) = 1 
 det(𝐴) = det(𝐴்) (a proof by induction can be found here) 
 If the columns (or rows) of A are linearly dependent, then det(𝐴) = 0 

o If A has a row (or column) of zeros, then det(𝐴) = 0 
 det(𝑘𝐴) = 𝑘det (𝐴) 
 A matrix is called upper triangular if it has non-zero elements only on the diagonal and above it (and 

it is called lower diagonal if it has non-zero elements only on the diagonal and below it). 
If 𝐴 is triangular (it has zeros above or below the diagonal), then2: 

 

det(𝐴) = ෑ 𝑎



ୀଵ

        𝑓𝑜𝑟 𝐴 = ൭

𝑎ଵଵ ∗ ∗
0 … ∗
0 0 𝑎

൱ 

o If 𝐴 is diagonal 𝑛 × 𝑛 matrix, then: 

det(𝐴) = ෑ 𝑎



ୀଵ

        𝑓𝑜𝑟 𝐴 = ൭
𝑎ଵଵ 0 0
0 … 0
0 0 𝑎

൱ 

 
 The determinant of a product of two square matrixes A, B is the product of their determinants: 

det(𝐴𝐵) = det(𝐴) det(𝐵) 
Remember, that in general it’s not true that 𝐴𝐵 = 𝐵𝐴. Nevertheless, from this final property we see 
that det(𝐴𝐵) = det (𝐵𝐴). 

Two more properties will make more sense when we talk about linear systems of equations: 

 If you interchange two rows or columns, the sign of the determinant changes 
(i.e.,det(𝐴) → − det(𝐴)). 

 If you add a multiple of one row to another, the determinant remains unchanged. 

 

1.3 Determinant calculation 
The determinant of a 1 × 1 matrix (a scalar) is the scalar itself: 

det(𝑘) = 𝑘 
The determinant of an order 2 matrix is: 

                                                           
2 You can see why this is true if you know how to calculate the determinant (see next sub-section), and use the first 
column to do it. 
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det ቀ
𝑎 𝑏
𝑐 𝑑

ቁ = 𝑎𝑑 − 𝑏𝑐 

In words, the determinant is the product of the elements along the main diagonal, minus the product of 
the off-diagonal elements. 
 
The determinant of a 3 × 3 matrix can be calculated using determinants of 2 × 2 submatrices: 
It is a linear combination of three determinants of order 2, whose coefficients (with alternating signs) 
are the first row the matrix: 

 
Note that we can find each 2 × 2 submatrix by deleting the row and column of the corresponding 
coefficient in the original matrix: 

 
In fact, you can use any row/column and use it to calculate the determinant as we did here for the first 
row. But be careful, you have to know how the signs change in every line/column: 

 
 
2. The trace 
Another useful number you can extract from a matrix is its trace. 
 
2.1 Trace definition 
The trace of a matrix 𝐴 is the sum of its diagonal elements: 

𝑡𝑟(𝐴) = 𝑎ଵଵ + 𝑎ଶଶ + ⋯ + 𝑎 =  𝑎



ୀଵ

 

2.2 Trace properties 
 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) 
 𝑡𝑟(𝑘𝐴) = 𝑘 𝑡𝑟(𝐴) 
 𝑡𝑟(𝐴்) = 𝑡𝑟(𝐴) 
 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) (notice that the trace is equal although in general 𝐴𝐵 ≠ 𝐵𝐴) 
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3. The inverse matrix as the reverse transformation 
Now we know a lot about matrices. Given a matrix A, we can tell what it does to the basis vectors, what 
its rank is (the dimension of its image), what its nullity is (the dimension of its kernel), and also its 
determinant and trace. Now we’ll see how we can use some of them to find the inverse matrix. 
 
3.1 Inverse matrix – intuition and examples 
The inverse matrix 𝐴ିଵ is the matrix which “undoes” what the matrix 𝐴 does. 
Let’s see two examples. 
 
Example 1 – an inverse matrix exists 

Let 𝐴 = ቀ
0 −1
1 0

ቁ.  What is the geometrical interpretation of what 𝐴 does? It’s a rotation of 90 degrees 

counter clockwise. For example: 

𝐴 ቀ
2
2

ቁ = ቀ
−2
2

ቁ 

How can we “undo” its effect? We can apply a rotation of 90 degrees counter clockwise: 

𝐴ିଵ = ቀ
0 1

−1 0
ቁ 

Indeed: 

𝐴ିଵ ቀ
−2
2

ቁ = ቀ
2
2

ቁ 

Or in other words: 
𝐴ିଵ𝐴𝑣 = 𝑣   →    𝐴ିଵ𝐴 = 𝐼 

 
Example 2 – an inverse matrix does not exist 

Now let 𝐴 = ൭
1 0 0
0 1 0
0 0 0

൱. What is the geometrical interpretation of what 𝐴 does? We’ve seen it before: 

it’s a projection of 3D space to the XY plane. For example: 

𝐴 ൭
1
3
5

൱ = ൭
1
3
0

൱ 

How can we “undo” its effect? In other words, how can we go back from ൭
1
3
0

൱ to the original ൭
1
3
5

൱? Well, 

we can’t. There is an infinite number of vectors of the form ൭
1
3
𝑧

൱ that are all projected to ൭
1
3
0

൱.  

In general, let’s imagine that 𝐴 did have an inverse 𝐴ିଵ, and we tried to solve this equations: 
𝐴�̅� = 0  →     𝐴ିଵ𝐴�̅� = 𝐴ିଵ0 →    �̅� = 0 

We found that �̅� = 0. But that’s obviously not true, because we know that our �̅� could have been non-

zero, like ൭
0
0
7

൱. 

 
3.2 Inverse matrix – definition 
A square matrix 𝐴 is invertible if there exists a matrix 𝐵 such that: 

𝐴𝐵 = 𝐵𝐴 = 𝐼 
The inverse matrix B is denoted 𝐴ିଵ. 
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An invertible matrix is also called “regular”. 
A non-invertible matrix is called “singular”. 
 
3.3 Conditions for invertibility  
What can we learn from the second example above? What is “wrong” with the matrix 𝐴, that makes it 
non-invertible? To answer this, let’s examine some of its properties. Together we will fill this table, for 
the equivalent conditions that determine that 𝐴 is not-invertible: 
 
For 𝐴×: 

Kernel ker(𝐴) ≠ {0} 
Nullity 𝑛𝑢𝑙𝑙(𝐴) ≠ 0 
Image 𝐼𝑚(𝐴) ≠ ℝ 
Rank 𝑟𝑎𝑛𝑘(𝐴) < 𝑛 
Determinant det(𝐴) = 0 
Columns 
linear 
dependence 

Columns of 𝐴 
are linearly 
dependent 

 

We can see that 𝑘𝑒𝑟(𝐴) = ൝൭
0
0
𝑣ଷ

൱ |𝑣ଷ ∈ ℝൡ. In other words, the kernel of 𝐴 includes more than the zero 

vector. 
This means that the dimension of the kernel (the nullity of 𝐴) is not 0. 
What about its image and rank? The image of 𝐴 (the span of its columns) is the XY plane:  

𝐼𝑚 = ቊቆ
𝑣ଵ

𝑣ଶ

0
ቇ |𝑣ଵ, 𝑣ଶ ∈ ℝቋ. In other words, 𝑟𝑎𝑛𝑘(𝐴) = 2 < 3. 

Its determinant is 0 (remember, it has a row of zeros). 
Finally, since one of the columns is the zero vector, we get that the columns of 𝐴 are linearly dependent. 
 
As an exercise, study the rotation matrix 𝐴 from our first example, and see that none of these conditions 
is satisfied. 
 
Note: Another way to think about singular matrices3 –  Let’s take a matrix with linearly dependent 

columns, like 𝐴 = ቀ
1 3
2 6

ቁ, and look for its inverse 𝐵 (meaning, we look for 𝐴𝐵 = 𝐵𝐴 = 𝐼). Each column 

in the result of 𝐴𝐵 will be some linear combination of the columns of 𝐴 (because this is always the case 
for matrix multiplication: if 𝐴𝐵 = 𝐶, then the columns of 𝐶 are linear combinations of the columns of 𝐴). 
But this means they will all be linearly dependent as well, so they definitely can’t give us the two linearly 

independent columns we are looking for, ቀ1 0
0 1

ቁ. 

 
3.2 Calculation of the inverse matrix 
Given an invertible matrix 𝐴, how can we calculate its inverse 𝐴ିଵ? 
                                                           
3 Based on Strang’s video 3, around 26:00. 
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The general method for calculating the inverse matrix is called “Gaussian Elimination”. We will not learn 
it now. For now, let’s find a formula for the inverse of a 2 × 2 matrix. 

𝐴 = ቀ
𝑎 𝑏
𝑐 𝑑

ቁ 

We are looking for a matrix 𝐵 that satisfies: 𝐴𝐵 = 𝐼. 
 

ቀ
𝑎 𝑏
𝑐 𝑑

ቁ ቀ
𝑥ଵ 𝑥ଶ

𝑦ଵ 𝑦ଶ
ቁ = ቀ

1 0
0 1

ቁ 

൬
𝑎𝑥ଵ + 𝑏𝑦ଵ 𝑎𝑥ଶ + 𝑏𝑦ଶ

𝑐𝑥ଵ + 𝑑𝑦ଵ 𝑐𝑥ଶ + 𝑑𝑦ଶ
൰ = ቀ

1 0
0 1

ቁ 

 
These are four equations: 
𝑎𝑥ଵ + 𝑏𝑦ଵ = 1 
𝑐𝑥ଵ + 𝑑𝑦ଵ = 0 
𝑎𝑥ଶ + 𝑏𝑦ଶ = 0 
𝑐𝑥ଶ + 𝑑𝑦ଶ = 1 
 
Taking the first two equations, and multiplying by d and b respectively: 
𝑎𝑑𝑥ଵ + 𝑑𝑏𝑦ଵ = 𝑑 
𝑏𝑐𝑥ଵ + 𝑑𝑏𝑦ଵ = 0 
 
Subtracting the second equation from the first: 
(𝑎𝑑 − 𝑏𝑐)𝑥ଵ = 𝑑 

𝑥ଵ =
𝑑

𝑎𝑑 − 𝑏𝑐
 

But what is the denominator? That’s just the determinant of A: 

𝑥ଵ =
𝑑

det(𝐴)
 

Similarly, we can get the full solution: 

𝐴ିଵ =
1

det(𝐴)
ቀ

𝑑 −𝑏
−𝑐 𝑎

ቁ 

Notice that we just have to switch the elements on the main diagonal, add a minus sign to the elements 
off the diagonal, and divide everything by det (𝐴). 
Also notice that we can easily see that if det(𝐴) = 0, then 𝐴ିଵ is not defined. 
 
3.3 The inverse of a composite matrix 
Now, given two square and invertible matrices 𝐴, 𝐵, what is the inverse of the composite matrix 𝐴𝐵? 
 
Before I tell you the answer, let’s try to think about it intuitively. 
Remember what happens when we apply a composite matrix on a vector: 

(𝐴𝐵)�̅� = 𝐴𝐵�̅� 
We read it from right to left: first we apply 𝐵 and get a new vector 𝐵�̅�. Then we apply 𝐴 and get the 
result. To “undo” this, we just have to apply the reverse transformations in the correct order – we 
always undo the most recent transformation. So first, we have to undo 𝐴: 

𝐴ିଵ(𝐴𝐵�̅�) 
Now, we have to undo 𝐵: 
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𝐵ିଵ(𝐴ିଵ𝐴𝐵�̅�) 
But this means that: 

(𝐵ିଵ𝐴ିଵ)(𝐴𝐵)�̅� = �̅� 
By definition, 𝐵ିଵ𝐴ିଵ is exactly the inverse matrix we were looking for. In general: 

(𝐴𝐵)ିଵ = 𝐵ିଵ𝐴ିଵ 
A formal proof is based on associativity – if we “guess” that the inverse matrix is 𝐵ିଵ𝐴ିଵ, all we have to 
do is test this: 

(𝐵ିଵ𝐴ିଵ)𝐴𝐵 = 𝐵ିଵ(𝐴ିଵ𝐴)𝐵 = 𝐵ିଵ𝐼𝐵 = 𝐵ିଵ𝐵 = 𝐼 
We can prove the other side in exactly the same way, by multiplying from the right. 
 
3.4 A general algorithm for finding the inverse matrix 

See lesson presentation on Moodle for an explanation of this section. 

There is a general algorithm for finding the inverse of a matrix (or figuring out that it does not exist, if 
the matrix is singular). This algorithm is based on three “elementary row operations”: 

 

It turns out that every such operation has a matrix associated with it, which we call an elementary 
matrix. The elementary matrix is simply the identity matrix after applying the elementary row operation 
to it. 

For example, for a 3x3 matrix the elementary matrix of changing rows 1 and 2 is: 

𝑅1 ↔ 𝑅2:  ൭
0 1 0
1 0 0
0 0 1

൱ 

The elementary matrix that adds a multiple of 3 of the first row to the third row is: 

𝑅3 → 𝑅3 + 3𝑅1:    ൭
1 0 0
0 1 0
3 0 1

൱ 

For an example on how to use row operation to find the inverse matrix, watch this short video: 
https://www.youtube.com/watch?v=HwRRdG_E4Yo. 


