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Linear Algebra – Lessons 5-6 
Matrix diagonalization 

 
After learning about matrices as linear transformations and as tools for solving linear systems of 
equations, today we will discuss two key aspects in linear algebra – eigenvectors and eigenvalues. These 
new concepts will prove invaluable when considering dynamical systems, as you will see in the courses 
“Dynamical systems and the neuron” and “Theoretical and computational neuroscience” A and B. 
 
 We will start by discussing eigenvectors and eigenvalues. 
 Then we will talk about changing bases. 
 Finally, we will combine the two concepts and talk about the basis of the eigenvectors. 
 
1. Eigenvectors and eigenvalues 
In general, we think of a matrix 𝐴 as representing some linear transformation – it takes a vector 𝑣̅ as 
input, and gives some new vector 𝐴𝑣̅ as output: 

 
We are interested in those special cases where the output vector is in the same direction as the input: 

 
 
Definition: A non-zero vector 𝑣̅ is called “an eigenvector of 𝐴” if 𝑣̅ is parallel to 𝐴𝑣̅: 

𝐴𝑣̅ = 𝜆𝑣̅ 
𝜆 is called the eigenvalue of the eigenvector 𝑣̅. 
𝜆 is a scalar, and it determines by how much 𝐴 scales 𝑣̅. 
 
Eigen in German means "own". Indeed, eigenvectors and eigenvalues are "characteristic" of a matrix. 
 
1.1 Intuitive examples 
1.1.1 Projection onto a plane (e.g., the xy plan) 
What are the eigenvalues and eigenvectors of the projection onto the plane? 

Let’s take 𝐴 = ൭
1 0 0
0 1 0
0 0 0

൱. Any vector in the XY plane satisfies: 

𝐴𝑣̅ = 𝑣̅   →      𝜆 = 1 



2 
 

So we see that it’s possible for many eigenvectors to have the same eigenvalue. 
 
But there is another eigenvalue. Any vector that is perpendicular to the plane (i,e., a vector along 𝑘෠) 
gives: 

𝐴𝑣̅ = 0  → 𝜆 = 0 
Notice that the last example also satisfies the definition of eigenvectors, since: 

𝐴𝑣̅ = 0𝑣̅ 
So we see that 0 is a perfectly legitimate eigenvalue. 
 
1.1.2 Permutation matrix 

Let 𝐴 = ቀ
0 1
1 0

ቁ. This matrix switches between the two axes. What are its eigenvectors and eigenvalues? 

If we think about it geometrically, it seems reasonable that vectors on the diagonal will be eigenvectors. 
These are the only vectors that “don’t mind” if you switch the 𝑥 and 𝑦 coordinates. Indeed: 

𝑣̅ = ቀ
1
1

ቁ     𝐴𝑣̅ = ቀ
1
1

ቁ   → 𝜆 = 1 

𝑣̅ = ቀ
−1
1

ቁ     𝐴𝑣̅ = ቀ
0 1
1 0

ቁ ቀ
1

−1
ቁ = ቀ

−1
1

ቁ   → 𝜆 = −1 

 
1.1.3 Shear 
Now let A represent a 2D shear, for example: 

𝐴 = ቀ
2 1
0 1

ቁ 

What are its eigenvectors? 

The first column is ቀ2
0

ቁ, which is just a scaled version of ቀ1
0

ቁ, so 𝑣̅ = ቀ
1
0

ቁ is an eigenvector with 𝜆 = 2. 

Which vector can we guess might be another eigenvector? Well, the shear stretches the component 
along 𝚤,̂ and also adds a component along 𝚤 ̂to the vectors along 𝚥̂. It therefore makes sense that if we 
look for a vector that is already between the two principal axes (𝚤,̂ 𝚥)̂ it will be an eigenvector. Indeed, if 

we look at 𝑣̅ = ቀ
1

−1
ቁ: 

𝐴𝑣̅ = ቀ
2 1
0 1

ቁ ቀ
1

−1
ቁ = ቀ

1
−1

ቁ 

Its eigenvalue is of course 1. 
Soon we will see how to find these systematically. 
 
 
1.2 The sum of the eigenvalues equals the trace, their product – the determinant 
Two important theorems relate the matrix eigenvalues to known characteristics of the matrix, its trace 
and determinant. 
 
The sum of the eigenvalues equals the trace:                          ∑ 𝜆௜௜ = 𝑇𝑟(𝐴) 
The product of the eigenvalues equals the determinant:       Π௜𝜆௜ = det(𝐴) 
If 𝑨 is diagonalizable, then the number of non-zero eigenvalues equals the rank1:∑ (𝜆௜ ≠ 0)௡

௜ୀଵ = 𝑟𝑎𝑛𝑘(𝐴) 

                                                           
1 This statement is true only if the matrix is diagonalizable (that is, it has n linearly independent eigenvectors). In 
the general case (you can read about it here), Let 𝐴 be an 𝑛 × 𝑛 matrix. The number of linearly independent 
eigenvectors corresponding to the eigenvalue 0 is equal to 𝑑𝑖𝑚(ker(𝐴)). By the rank-nullity theorem you know 
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Notice that this is true for the example above. For example, for the permutation matrix: 

𝑡𝑟(𝐴) = 0        (= 1 + (−1)) 
det(𝐴) = −1     (= 1 ∙ −1) 

But how can we find these eigenvectors and eigenvalues systematically? 
 
1.3 A systematic procedure for finding eigenvectors and eigenvalues 
Step 1: The characteristic polynomial 
We start with the eigenvector definition: 

𝐴𝑣̅ = 𝜆𝑣̅ 
You might think we should treat it like a system of linear equations, but it doesn’t really resemble any 
case we have seen so far, since both 𝑣̅ and 𝜆 are unknown. 
 
First, note that we have two kinds of multiplication we here (matrix-vector and scalar-vector). 

Remember we can think of 𝜆𝑣̅ as   𝜆𝐼𝑣̅ = ൭
𝜆 0 0
0 … 0
0 0 𝜆

൱ 𝑣̅, so: 

(𝐴 − 𝜆𝐼)𝑣̅ = 0 
Now keep good track of the next argument. 
We still don’t know what 𝑣̅ is, but we do know something about it: it is a non-zero vector that is sent to 
0. In other words, 𝒗ഥ is in the kernel of (𝑨 − 𝝀𝑰). But this means that the kernel is not empty, so this 
new matrix is singular.  
 
This means that: 

det(𝐴 − 𝜆𝐼) = 0 
In this new equation, 𝑣̅ does not appear, so we can now just solve for 𝜆. 
We call the resulting equation the characteristic polynomial of 𝐴. For an 𝑛 × 𝑛 matrix, det(𝐴 − 𝜆𝐼) is a 
polynomial of degree 𝑛 in 𝜆. 
 
To summarize this reasoning: 

𝑣̅ ≠ 0,   𝑣̅ ∈ 𝑘𝑒𝑟(𝐴 − 𝜆𝐼)    →     𝑘𝑒𝑟(𝐴 − 𝜆𝐼) ≠ {0}     →     det(𝐴 − 𝜆𝐼) = 0 
 
Step 2: Solve for each λ 
Solving det(𝐴 − 𝜆𝐼) = 0 means finding all the possible values of 𝜆 that satisfy this condition. 
Once we find some specific 𝜆଴, we will plug it back in the equation, and solve for 𝑣̅, since we now have a 
regular homogeneous equation: 

(𝐴 − 𝜆଴𝐼)𝑣̅ = 0 
So for any eigenvalue 𝜆଴ we can try to find a relevant eigenvector (or several independent eigenvectors). 
The eigenvectors we find for 𝜆଴ are called a basis for the eigenspace of 𝜆଴. 
 

                                                           
that 𝑑𝑖𝑚(𝑘𝑒𝑟(𝐴)) + 𝑟𝑎𝑛𝑘 = 𝑛. If 𝐴 is diagonalizable, this reduces to the theorem above. Here is a case of a matrix 

with only 0 as its eigenvalue (algebraic multiplicity of 2), but with 𝑟𝑎𝑛𝑘 = 1: ቀ0 1
0 0

ቁ. By the end of the course, you 

can read about a relation between the  number of non-zero eigenvalues of 𝐴 and the matrix 𝐴்𝐴 here. 
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Example 
Let’s look at the same shear example from above: 

𝐴 = ቀ
2 1
0 1

ቁ 

det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 ቀ
2 − 𝜆 1

0 1 − 𝜆
ቁ = (2 − 𝜆)(1 − 𝜆) = 0 

𝜆ଵ = 2,    𝜆ଶ = 1 
 
Now, to find an eigenvector for 𝜆ଵ: 

൬
2 − 𝜆ଵ 1

0 1 − 𝜆ଵ
൰ 𝑣̅ = ቀ

0 1
0 −1

ቁ ቀ
 𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

This is equivalent to a single equation: 
𝑣ଶ = 0 

This means there is no constraint of 𝑣ଵ, and we can choose whichever 𝑣ଵ we want. For example 𝑣ଵ = 1. 
So we can have this eigenvector-eigenvalue pair: 

𝑣̅ଵ = ቀ
1
0

ቁ , 𝜆ଵ = 2 

This makes sense, because just by looking at the matrix we can see that 𝚤 ̂is simply scaled by 2. 
 
To find an eigenvector for 𝜆ଶ: 

൬
2 − 𝜆ଶ 1

0 1 − 𝜆ଶ
൰ 𝑣̅ = ቀ

1 1
0 0

ቁ ቀ
 𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

These are actually two equations: 
𝑣ଵ + 𝑣ଶ = 0 and 0 = 0 

→ 𝑣ଵ = −𝑣ଶ 

→ 𝑣̅ଶ = ቀ
1

−1
ቁ , 𝜆ଶ = 1 

Note that it’s not accurate to say “find the eigenvector” of some eigenvalue. We always have freedom in 
scaling the eigenvector (if 𝑣̅ is an eigenvector with some eigenvalue, so is 𝑘𝑣̅).  
In some cases, we have even greater freedom. For example, what would happen if you look for 
eigenvectors of the identity matrix 𝐼? 
 
Three important theorems 
Theorem 1: A square matrix 𝐴 is invertible iff 0 is not an eigenvalue of 𝐴. 
 
Theorem 2: Eigenvectors that correspond to distinct eigenvalues are linearly independent. 
Note that the opposite is not true: you might have similar eigenvalues that still have linearly 
independent eigenvectors. 
 
Theorem 3: For a triangular matrix, the eigenvalues are the entries on its main diagonal. 
 
1.4 The multiplicity of an eigenvalue 
Definition: The algebraic multiplicity of an eigenvalue 𝜆଴ is the number of times the factor (𝜆 − 𝜆଴) 
appears in the characteristic polynomial. 
For example, what is the multiplicity of the eigenvalue 𝜆 = 1 in the 3D identity matrix? The answer is 3. 
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Definition: The geometric multiplicity of an eigenvalue 𝜆଴ is the number of independent eigenvectors 
associated with it. 
 
 
Note that the algebraic multiplicity and geometric multiplicity of a given eigenvalue can differ. However, 
the geometric multiplicity can never exceed the algebraic multiplicity. Moreover, by definition, every 
eigenvalue must have at least one independent eigenvector associated with it (therefore, the 
geometrical multiplicity is never 0). 
 
1.5 Eigenvalues can be complex numbers 
Let’s look at a rotation 90 degrees counterclockwise. 
Question: What would be the matrix that represents this transformation? 

Answer: Just by looking where the basis vectors 𝚤 ̂and 𝚥̂ land, we can infer that 𝐴 = ቀ
0 −1
1 0

ቁ 

 
Now, if we use the theorems from before: 

𝑡𝑟(𝐴) = 0 + 0 = 𝜆ଵ + 𝜆ଶ 
det(𝐴) = 1 = 𝜆ଵ𝜆ଶ 

We can already see what the eigenvalues will be. If we do it systematically: 

det(𝐴 − 𝜆𝐼) = det ቀ
−𝜆 −1
1 −𝜆

ቁ = 𝜆ଶ + 1 = 0 

→ 𝜆ଵ = 𝑖, 𝜆ଶ = −𝑖 
As you can see, even though all matrix entries were real, the eigenvalues are complex (and in this case, 
since this is an anti-symmetric matrix, purely imaginary). 
 
Question: What are the eigenvectors corresponding to 𝜆ଵ, 𝜆ଶ? 
Answer: As long as we’re talking about real matrices and vectors, there are no eigenvectors for this 

matrix. To talk about the eigenvectors of the rotation matrix, we must move on to talking about 
vectors over the complex field, 𝑣̅ ∈ ℂ, where the vector’s entries can be complex. We won’t do 
this now. 

 
2. Change of basis 
2.1 Different bases can describe the same vector 
To make good use of eigenvalues and eigenvectors, we introduce the concept of change of basis. 

Throughout the course, when we write vectors like ቀ1
3

ቁ or matrices like ቀ1 −1
1 1

ቁ, we know how to 

interpret them geometrically. You know how to relate the vector ቀ1
3

ቁ to the correct point in the 2D 

plane. The reason for this is that we are implicitly using the same coordinate system – we all agree on 
the orientation of the basis vectors and their length. 
 
Other coordinate systems are also possible. For example, think of Alice Through the Looking Glass. After 
Alice walks through the mirror, the left-right axis (or 𝚤)̂ is flipped: 
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Alice uses a different coordinate system to describe the same vector. For her, getting to the point 𝑣̅ 
entails going 1 step opposite to 𝚤 ̂and 3 step in the direction of 𝚥̂.  
We can think of coordinate systems as different languages. In the case of Alice’s coordinate system, the 
translation between languages is easy: 

𝑢ത = ቀ
𝑢ଵ

𝑢ଶ
ቁ   →     𝑢ത஺௟௜௖௘ = ቀ

−𝑢ଵ

𝑢ଶ
ቁ 

 
Spoiler alert: Choosing some arbitrary basis seems to be a silly thing to do. Soon we’ll see that moving to 
a new basis can have many advantages. The basis that is defined by the eigenvectors of a matrix is 
especially useful. 
 
 
Definition: A basis for a space is a sequence of vectors 𝑒̅ଵ, 𝑒̅ଶ, … , 𝑒̅ௗ  with two properties: 

 They are independent (there aren’t too many vectors in the basis) 
 They span the space    (there aren’t too few vectors in the basis) 

In other words, a basis is a linearly independent spanning set of vectors.  
 
Note that given a basis for some space, the number of vectors in the basis is the dimension of the space. 
 
Definition (reminder): The space spanned by the vectors 𝑒̅ଵ, 𝑒̅ଶ, … , 𝑒̅ௗ consists of all linear combinations 

of these vectors. 
 
 
2.2 Changing bases using matrices 
2.2.1 The change of basis matrix 

Let’s take some arbitrary basis, say: 𝑒̂ଵ = ቀ
3
1

ቁ , 𝑒̂ଶ = ቀ
−1
2

ቁ. Notice that these two new basis vectors are 

written in our standard basis, in the language we are used to. 
 

Now, let 𝑣̅ = ቀ
1
2

ቁ
௡௘௪

 be a vector in this new coordinate system. Notice that we write “new” in the 

subscript to remind ourselves that these coordinates are relative to the new coordinate system. 
 
How is this vector represented in our standard coordinate system? 
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The entries of 𝑣̅ tells us that we have to take 1 step in the direction of 𝑒̂ଵ and 2 steps in the direction of 
𝑒̂ଶ: 

𝑣̅ = 1 ቀ
3
1

ቁ + 2 ቀ
−1
2

ቁ = ቀ
3 − 2
1 + 4

ቁ = ቀ
1
5

ቁ 

 
We can make this translation process even easier. When we first introduced matrices, we said that we 
can think of 𝐴𝑥̅ as a linear combination of the columns of 𝐴. For example: 

𝐴 = ቀ
𝑎 𝑏
𝑐 𝑑

ቁ , 𝑥̅ = ቀ
𝑥ଵ

𝑥ଶ
ቁ   →     𝐴𝑥̅ = 𝑥ଵ ቀ

𝑎
𝑐

ቁ + 𝑥ଶ ቀ
𝑏
𝑑

ቁ 

So in fact, we can construct a “change of basis” matrix that translates from the new basis to the 
standard basis: 

𝑃 = ቀ
3 −1
1 2

ቁ 

The change of basis matrix is the matrix whose columns are the new basis vectors. 
 
Given any vector in the new basis, we can write it down in our standard basis like this: 

𝑣̅ = 𝑃𝑣̅௡௘௪ 
Notice that 𝑃 is written using our own coordinates2. 
 

This matrix 𝑃 is called the change of basis matrix. It tells us that the vector 𝚤̂௡௘௪ is mapped to ቀ3
1

ቁ and 

the vector 𝚥௡̂௘௪ is mapped to ቀ−1
2

ቁ. 

 
Question: Does this feel unintuitive? 
If it does, it might be helpful to use the following metaphor. 𝑃 is like a dictionary that translates words 
from a foreign language (i.e., vectors written in a different basis) to our own language. In order for us to 
understand it, the dictionary itself has to be in our own language. 
 
2.2.2 The inverse of the change of basis matrix 
Now we know how to change basis from the new basis to our own basis. 
What matrix can we use in order to change bases in the other direction, from our basis to the new 
basis? 
The answer is simple: it’s 𝑃ିଵ, the inverse of 𝑃. Can you see why? 
 
2.3 Change of basis of a matrix 
We know how to transform a vector from one basis to the other. 
How can we transform an entire matrix from one basis to the other? 
 
We will start with what we already know – transforming vectors.  
Let’s say we have a vector 𝑣̅௡௘௪ in the new basis, and a matrix 𝐴 in the old, standard basis. Instead of 
transforming the matrix 𝐴 to a new basis, we can transform 𝑣̅௡௘௪ to the standard basis: 

𝑃𝑣̅௡௘௪ 

                                                           
2 If it were written in the new basis, it would be 𝑃௡௘௪ = ቀ

1 0
0 1

ቁ, because each column is just the corresponding 

(new) basis vector. 
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Now we can apply the matrix 𝐴 as usual: 
𝐴𝑃𝑣̅௡௘௪ 

But since we started with a vector in the new basis, we want the output vector to also be in the new 
basis. For this, we simply have to multiply the result by 𝑃ିଵ: 

𝑃ିଵ𝐴𝑃ᇣᇧᇤᇧᇥ
஺ ௜௡ ௧௛௘

௡௘௪ ௕௔௦௜௦

𝑣̅௡௘௪ 

But notice that this is simply the composite matrix 𝑃ିଵ𝐴𝑃 multiplying the vector 𝑣̅௡௘௪. After seeing this, 
we can infer that the representation of a matrix 𝐴 in a new basis defined by the columns of 𝑃 is: 

𝐴௡௘௪ = 𝑃ିଵ𝐴𝑃 
𝐴 and 𝐴௡௘௪ are called “similar matrices”. Similar matrices represent the same linear transformation in 
different bases. 
 
Concrete example 
For a concrete example, let’s use the new basis from 2.2.1. The basis vectors were: 

𝑒̂ଵ = ቀ
3
1

ቁ , 𝑒̂ଶ = ቀ
−1
2

ቁ, the change of basis matrix was 𝑃 = ቀ
3 −1
1 2

ቁ, and the vector we looked at was 

𝑣̅௡௘௪ = ቀ
1
2

ቁ
௡௘௪

. Let 𝐴 = ቀ
−1 0
0 2

ቁ be the matrix that we wish to apply to 𝑣̅௡௘௪. We cannot take 𝐴𝑣̅௡௘௪  

because 𝐴 and 𝑣̅௡௘௪ are not expressed in the same coordinate systems. So following the logic from 
above, we take: 

𝑣̅ = 𝑃𝑣̅௡௘௪ = ቀ
3 −1
1 2

ቁ ቀ
1
2

ቁ = ቀ
1
5

ቁ 

𝐴𝑣̅ = 𝐴𝑃𝑣̅௡௘௪ = ቀ
−1 0
0 2

ቁ ቀ
1
5

ቁ = ቀ
−1
10

ቁ  

To go back to the new basis, we need 𝑃ିଵ, which is3: 

𝑃ିଵ =
1

7
ቀ

2 1
−1 3

ቁ 

So: 

𝑃ିଵ𝐴𝑃𝑣̅௡௘௪ =
1

7
ቀ

2 1
−1 3

ቁ ቀ
−1
10

ቁ =
1

7
ቀ

8
31

ቁ 

So 𝐴 in the new basis is actually: 

𝐴௡௘௪ = 𝑃ିଵ𝐴𝑃 =
1

7
ቀ

2 1
−1 3

ቁ ቀ
−1 0
0 2

ቁ ቀ
3 −1
1 2

ቁ 

 
3. Matrix diagonalization4 
3.1 The matrix in its eigenbasis 
Given a matrix A, it seems like we have no reason to transform it to a different basis. But in fact, one 
basis will prove very useful –the eigenbasis. If we choose the eigenvectors as the basis vectors, various 
computation becomes much easier. 
 

                                                           
3 Remember that for a 2x2 matrix  

𝑃ିଵ =
1

det(𝑃)
ቀ

𝑑 −𝑏
−𝑐 𝑎

ቁ 
4 This section is based on lecture 22 from Strang’s lectures. 
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Let 𝐴 be some matrix with 𝑛 independent eigenvectors {𝑣̅௜}௜ୀଵ
௡  and their associated eigenvalues {𝜆௜}௜ୀଵ

௡ . 
Let 𝑃 be a matrix of the eigenvectors (this is the change of basis matrix from the eigenbasis to the 
standard basis): 

𝑃 = ൭
| | |

𝑣̅ଵ … 𝑣̅௡

| | |
൱ 

We will show that: 
𝑃ିଵ𝐴𝑃 = Λ 

where Λ = ൭
𝜆ଵ 0 0
0 … 0
0 0 𝜆௡

൱ is a matrix with the corresponding eigenvalues on the diagonal. 

 
Each column of 𝑃 is an eigenvector of 𝐴. Now: 

𝐴𝑃 = 𝐴 ൭
| | |

𝑣̅ଵ … 𝑣̅௡

| | |
൱ 

Since 𝑣̅௜ are eigenvectors, we have 𝐴𝑣̅௜ = 𝜆௜𝑣̅௜ 

൭𝜆ଵ

| | |
𝑣̅ଵ … 𝜆௡𝑣̅௡

| | |
൱ 

We can rewrite this as matrix multiplication5: 

= ൭
| | |

𝑣̅ଵ … 𝑣̅௡

| | |
൱ ൭

𝜆ଵ 0 0
0 … 0
0 0 𝜆௡

൱ = 𝑃Λ 

So we have: 
𝐴𝑃 = 𝑃Λ 

Now multiply by 𝑃ିଵ from the left to get: 
𝑃ିଵ𝐴𝑃 = Λ 

What does this mean? When we represent the matrix 𝑨 in its eigenbasis, it is diagonal. Any entry off 
the diagonal is 0. This makes perfect sense – the first column of a matrix tells us what happens to the 
first basis vector. In this case, the first basis vector is 𝑣̅ଵ, and what 𝐴 does is simply to multiply it by 𝜆ଵ. 
 
Representing a matrix in its eigenbasis is called diagonalizing the matrix. 
 
Notice that we could equally get: 

𝐴 = 𝑃Λ𝑃ିଵ 
 
3.2 Condition for diagonalizability 
Notice a very important point: by using 𝑃ିଵ we assumed that 𝑃 is invertible. 
 
Question: What are the conditions for which a matrix 𝑃 is invertible? 
Answer: One sufficient condition was that the columns of 𝑃 must be linearly independent. 

                                                           
5 Remember this from Exercise 02? If you want to multiply each column of 𝐴 by a different number 𝜆௜, you have to 

multiply it from the right: 𝐴 ൭
𝜆ଵ 0 0
0 … 0
0 0 𝜆௡

൱ 
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A matrix is diagonalizable iff it has 𝑛 independent eigenvectors. 
 
Based on one of the theorems above - A sufficient condition for being diagonalizable: 
If 𝐴௡×௡ has 𝑛 different eigenvalues, it is sure to have 𝑛 independent eigenvectors, and is therefore 
diagonalizable. 
 
 
3.3 What is diagonalization good for? 

What’s special about a diagonal matrix? Think about some non-diagonal matrix, like ቀ1 2
0 1

ቁ. This matrix 

represent a shear. While it keeps 𝚤 ̂in place, it takes any vector with a 𝚥̂ components, and adds to it some 
component along the 𝚤 ̂direction. In other words, it “mixes” the coordinates of the vector: having some 
x-component before the transformation results in having some y-component after the transformation. 
 
This is not the case for a diagonal matrix. In a diagonal matrix coordinates never get “mixed”. The 
directions are independent of each other.  
 
Now, think about a system of linear equations. Wouldn’t it be great if the coefficient matrix was 
diagonal? Solving the system then would be very easy, as every unknown is already isolated: 
 

൮

𝜆ଵ 0 0 0
0 𝜆ଶ 0 0
0 0 … 0
0 0 0 𝜆௡

൲ ൮

𝑥ଵ

𝑥ଶ

…
𝑥௡

൲ = ൮

𝑏ଵ

𝑏ଶ

…
𝑏௡

൲ 

 
3.3.1 Powers of 𝐴 
Changing to the eigenbasis is very useful when we want to calculate the power of a matrix. For example, 

let 𝐴 = ቀ
1 3
2 5

ቁ. What is 𝐴ଵ଴଴? 

In the standard basis, to find 𝐴ଵ଴଴ we have to multiply 𝐴 by itself a hundred times: 
𝐴ଵ଴଴ = 𝐴 ∙ 𝐴 ∙ 𝐴 ∙ … ∙ 𝐴 

Instead, we can move to the eigenbasis, calculate the power there, and return to our old basis. 
 
For example, finding 𝐴ଶ is simple when we diagonalize the matrix: 
 

𝐴ଶ = 𝐴𝐴 = (𝑃Λ𝑃ିଵ)(𝑃Λ𝑃ିଵ) = 𝑃ΛΛ𝑃ିଵ = 𝑃Λଶ𝑃ିଵ 
And in general, raising 𝐴 to any power 𝑘: 

𝐴௞ = 𝑃Λ௞𝑃ିଵ 
This is easy to calculate because: 

Λ௞ = ൮

𝜆ଵ 0 0 0
0 𝜆ଶ 0 0
0 0 … 0
0 0 0 𝜆௡

൲

௞

=

⎝

⎛

𝜆ଵ
௞ 0 0 0

0 𝜆ଶ
௞ 0 0

0 0 … 0
0 0 0 𝜆௡

௞⎠

⎞ 
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3.3.2 Representing vectors in the eigenbasis 
So far we’ve seen that moving to the new eigenbasis can be useful. In fact, we can enjoy the benefits of 
the eigenbasis even without changing the basis. Instead, we can use the eigenbasis differently, as we 
show next. 
 
When we have 𝑛 independent eigenvectors {𝑣̅௜}௜ୀଵ

௡  for some matrix 𝐴, they form a basis for the vector 
space. This means we can represent any vector as a unique linear combination of 𝑣̅ଵ, 𝑣̅ଶ, … , 𝑣̅௡. For any 
𝑢ത ∈ ℝ௡: 

𝑢ത = 𝑎ଵ𝑣̅ଵ + 𝑎ଶ𝑣̅ଶ + ⋯ + 𝑎௡𝑣̅௡ = ෍ 𝑎௜𝑣̅௜

௡

௜ୀଵ

 

Calculating 𝐴𝑢ത  should be very easy now: 

𝐴𝑢ത = 𝐴 ൭෍ 𝑎௜𝑣̅௜

௡

௜ୀଵ

൱ = ෍ 𝑎௜𝐴𝑣̅௜

௡

௜ୀଵ

= ෍ 𝑎௜𝜆௜𝑣̅௜

௡

௜ୀଵ

 

Again we see this “no-mixing coordinates” effect – What 𝐴 does is simply scale each coefficient in the 
linear combination of the eigenvectors by the relevant eigenvalue. 
 
3.4 Matrix functions (specifically, matrix exponential) 
This is a good time to talk about matrix functions. A matrix function takes as input a square 𝑛 × 𝑛 matrix 
and gives as output a square 𝑛 × 𝑛 matrix. 
 

For example, 𝑓(𝐴) = 2𝐴ଵ଻ +
ଵ

ଶ
𝐴ଶ + 𝐼 is a matrix polynomial. Of course, you see that if 𝐴 is 

diagonalizable, then it might be easier to calculate such a matrix polynomial. 
 
Some of you already learned that some functions can be represented as an infinite sum of power terms 

(in fact, those that are indefinitely differentiable, meaning the derivative ௗ௙(௫)

ௗ௫
,

ௗమ(௫)

ௗ௫మ  etc. are well-

defined). For example: sin(𝑥) = 𝑥 −
௫య

ଷ!
+

௫ఱ

ହ!
−

௫ళ

଻!
+ ⋯. This infinite sum is called the Taylor expansion of 

the function. 
 
 
For a general function, we use the next theorem: 
 

Theorem: If a function 𝑓(𝑥) has a Taylor expansion (𝑓(𝑥) = 𝑓(0) + 𝑓ᇱ(0) ∙ 𝑥 + 𝑓ᇱᇱ(0) ∙
௫మ

ଶ!
+ ⋯) , then 

the matrix function 𝑓(𝐴) is defines by substituting 𝑥 by 𝐴. 
Note that this definition of 𝑓(𝐴) is true even if the matrix is not diagonalizable. 
 

Example: sin(𝐴) = ቀ𝐴 −
஺య

ଷ!
+

஺ఱ

ହ!
−

஺ళ

଻!
+ ⋯ ቁ 

 
3.4.1 Matrix function used on an eigenvector 
While thinking about actually calculating so many terms sounds like a terrible idea, things become easier 
when we think about eigenvectors. 
Let 𝑣̅ be an eigenvector of 𝐴 with eigenvalue 𝜆. Then for a matrix function 𝑓(𝐴): 
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𝑓(𝐴)ถ
௠௔௧௥௜௫

𝑣̅ = 𝑓(𝜆)ถ
௡௨௠௕௘௥

𝑣̅ 

Question: Can you see why this is true? (Hint: think about the Taylor expansion) 
 
This fact is easier to see for the case of diagonal matrices, as we show below. 
 
3.4.2 Matrix function of diagonal matrices 
Let 𝐴 be a diagonalizable matrix with 𝐴 = 𝑃Λ𝑃ିଵ. In this case, applying the power series definition we 
find that: 

𝑓(𝐴) = 𝑃 ൭
𝑓(𝜆ଵ) … 0

… … …
0 … 𝑓(𝜆௡)

൱ 𝑃ିଵ 

 
From this we can see that if 𝐴 had eigenvalues 𝜆ଵ, 𝜆ଶ, … 𝜆௡, then the eigenvalues of 𝑓(𝐴) are 𝑓(𝜆௜). 
 
3.4.3 The matrix exponential 
One specific example that tends to appears in real life applications is the matrix exponential, such as 𝑒஺௧ 
(where 𝑡 is a parameter that denotes time). It often appears when we solve a system of linear 
differential equations. 
 

The Taylor expansion of the exponential is 𝑒௫ = ∑
ଵ

௞!
𝑥௞ஶ

௞ୀ଴ . 

In the calculus course you’ve seen that for a time-dependent variable 𝑦(𝑡), the 1D equation: 
𝑦̇ = 𝑎𝑦 

Has the following solution6: 
𝑦(𝑡) = 𝑒௔௧𝑦(0) 

(you can check this: put this 𝑦(𝑡) back in the equation and make sure that the equation holds). 
 
Now imagine that 𝑦 is no longer a variable, but a vector of variables, all related to each other by a set of 
coupled differential equations7: 

𝑦ത̇ = 𝐴𝑦ത 
For example: 

⎝

⎜
⎜
⎛

𝑑𝑦ଵ

𝑑𝑡
𝑑𝑦ଶ

𝑑𝑡
𝑑𝑦ଷ

𝑑𝑡 ⎠

⎟
⎟
⎞

= ൭
−1 2 2
3 −2 4
0 1 −1

൱ ൭

𝑦ଵ

𝑦ଶ

𝑦ଷ

൱ 

Solving this system means finding three functions, 𝑦ଵ(𝑡), 𝑦ଶ(𝑡), 𝑦ଷ(𝑡) that will satisfy these three 
equations. In this example you can see that as each variable increases, it tends to lower its own rate of 
change in time. In contrast, it tends to increase the rate of change of the other variables. 
 

                                                           
6 Note that the unknown here is actually a function. We are looking for a function that satisfies this relation. The 
number 𝑦(0) is called “the initial condition”, and is usually given. 
7 “Coupled” simply means that each variable equation depends on the rest of the variables. 
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Back to the general case. Let’s take some inspiration from the 1D case, and “guess” that the solution is 
given by: 

𝑦ത(𝑡) = 𝑒஺௧𝑦ത(0) 
Or written with the Taylor expantion: 

𝑦ത(𝑡) = ൬𝐼 + 𝐴𝑡 +
1

2
(𝐴𝑡)ଶ +

1

3!
(𝐴𝑡)ଷ + ⋯ ൰ 𝑦ത(0) 

First: To verify that it is indeed the solution, we have to plug it back in the original equation (the left-

hand side), and see if we get what we expected (the right-hand side). We now compute ௗ

ௗ௧
𝑦ത(𝑡) and 

hope that we get 𝐴𝑦ത: 
𝑑

𝑑𝑡
𝑦ത(𝑡) =

𝑑

𝑑𝑡
൫𝑒஺௧𝑦ത(0)൯ = ൬ 𝐴 + 𝐴ଶ𝑡 +

1

2!
𝐴ଷ𝑡ଶ + ⋯ ൰ 𝑦ത(0)

= 𝐴 ൬ 𝐼 + 𝐴𝑡 +
1

2
(𝐴𝑡)ଶ +

1

3!
(𝐴𝑡)ଷ + ⋯ ൰ 𝑦ത(0) = 𝐴 𝑒஺௧𝑦ത(0)ᇣᇧᇤᇧᇥ

௬ത(௧)

= 𝐴𝑦ത(𝑡) 

 
And indeed, we got the right-hand side of the equation. This tells us that our guess was correct, and that 
this really is a solution to the system. 
   
As we know, actually calculating 𝑒஺௧ may be hard. It might be easier to use the eigenbasis: 
  

𝑒஺௧ = 𝑃𝑒ஃ௧𝑃ିଵ = 𝑃 ൭
𝑒ఒభ௧ … 0

… … …
0 … 𝑒ఒ೙௧

൱ 𝑃ିଵt 

In this new basis the equations are no longer coupled. 
 
Finally, if we are given the initial vector 𝑦ത(0), we can use it to find a simple form for the solution at any 
time point 𝑡. First, we have to describe the initial vector 𝑦ത(0) as a linear combination of the 
eigenvectors 𝑢തଵ, 𝑢തଶ, … , 𝑢ത௡: 

𝑦ത(0) = 𝑐ଵ𝑢തଵ + 𝑐ଶ𝑢തଶ + ⋯ + 𝑐௡𝑢ത௡ 
 
And because 𝐴𝑢ത௜ = 𝜆௜𝑢ത௜, we know that 𝑒஺௧𝑢ത௜ = 𝑒ఒ೔௧𝑢ത௜. Therefore, the solution is: 
 will be: 

𝑒஺௧𝑦ത(0) = 𝑐ଵ𝑒ఒభ௧𝑢തଵ + 𝑐ଶ𝑒ఒమ௧𝑢തଶ + ⋯ +  𝑐௡𝑒ఒ೙௧𝑢ത௡ 
 
3.5 Using the eigenbasis to solve a dynamic system 
In your homework, as well as in the course “Dynamical systems and the neuron” you will see a concrete 
example for how the eigenbasis, and the powers of a matrix in particular, are useful for studying 
dynamical systems. 
 
An interesting side note (for the interested only, we haven’t talked about this in class) 
In one of your homework assignments you learned about nilpotent matrices (a nilpotent matrix is a 
matrix for which there is a scalar 𝑘 such that 𝐴௞ = 0). For a nilpotent matrix, the infinite sum of powers 

in the Taylor expansion will actually become finite. For example, look at 𝐴 = ቀ
0 1
0 0

ቁ. You can show that 

𝐴ଶ = ቀ
0 0
0 0

ቁ. Therefore, 𝑒஺௧ = 𝐼 + 𝐴𝑡 + 0 + 0 + 0 … = 𝐼 + 𝐴𝑡 = ቀ
1 𝑡
0 1

ቁ.  
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Note that in this example the matrix doesn’t have 𝑛 independent eigenvectors, so we could not use the 
eigenbasis to describe any arbitrary vector. 
 
 
4. Example problem – Fibonacci numbers8 
The Fibonacci numbers are the numbers in the following series: 

0,1,1,2,3,5,8,13… 
Every number is the sum of the preceding two numbers: 

𝐹௞ାଶ = 𝐹௞ାଵ + 𝐹௞  
This is in fact a dynamical system. You can think about the index 𝑘 as denoting (discrete) points in time.  
All the Fibonacci numbers are determined by the first two numbers in the series 𝐹଴ = 0 and 𝐹ଵ = 1. 
 
 What is 𝐹ଵ଴଴? 
 Can we find a general formula for 𝐹ே?  
 Can we say how fast the Fibonacci numbers are growing? 
 
If we simply calculate the ratio between every two successive numbers we can see that the ratio is 
somewhat noisy in the beginning, but slowly stabilizes around 1.618…: 
 

 
 Why is that? 
 
If we want to use linear algebra to answer these questions, we would like to formulate the problem as 
some matrix-vector multiplication. We start by constructing the following vector: 
 

𝑢ത௞ = ൬
𝐹௞ାଵ

𝐹௞
൰ 

Now: 
𝑢ത௞ାଵ = 𝐴𝑢ത௞ 

൬
𝐹௞ାଶ

𝐹௞ାଵ
൰

ᇣᇧᇤᇧᇥ
௨ഥೖశభ

= 𝐴 ൬
𝐹௞ାଵ

𝐹௞
൰ 

What should be this matrix 𝐴? 

൬
𝐹௞ାଶ

𝐹௞ାଵ
൰ = ቀ

1 1
1 0

ቁ ൬
𝐹௞ାଵ

𝐹௞
൰ 

So we found: 

                                                           
8 This example is taken from Strang’s lecture 22 (at 34:30). 
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𝑢ത௞ାଵ = ቀ
1 1
1 0

ቁ 𝑢ത௞ 

Of course: 
𝑢തଵ଴଴ = 𝐴ଵ଴଴𝑢ത଴ 

 
But calculating 𝐴ଵ଴଴ seems like a horrible idea. To make it easier, we’ll change to the eigenbasis of 𝐴. 
Let’s call the eigenvectors 𝑣̅ଵ and 𝑣̅ଶ. If we decompose 𝑢തଵ to its components in the eigenbasis, we find: 

𝑢തଵ଴଴ = 𝐴ଵ଴଴(𝑐ଵ𝑣̅ଵ + 𝑐ଶ𝑣̅ଶ) 
𝑢തଵ଴଴ = 𝑐ଵ𝜆ଵ

ଵ଴଴𝑣̅ଵ + 𝑐ଶ𝜆ଶ
ଵ଴଴𝑣̅ଶ 

 
So what are the eigenvalues and eigenvectors of this matrix? 

det(𝐴 − 𝜆𝐼) = det ቀ
1 − 𝜆 1

1 −𝜆
ቁ = 𝜆ଶ − 𝜆 − 1 = 0 

And we find that: 

𝜆ଵ,ଶ =
1 ± √5

2
 

You can see that 𝜆ଵ ≈ 1.618, 𝜆ଶ ≈ −0.618. 
  
If we plug this back to the equation, we get: 

𝑢തଵ଴଴ ≈ 𝑐ଵ(1.618)ଵ଴଴𝑣̅ଵ + 𝑐ଶ (−0.618)ଵ଴଴ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
≈଴

𝑣̅ଶ 

You can see that the system evolves by consecutive changes of the two different eigenvectors, 𝑣̅ଵ and 
𝑣̅ଶ. These are also called the modes of the system, or the eigenmodes of the system.  
 
Back to the system. From the last equation you can see that because |𝜆ଶ| < 1, the second term 
vanishes. In other words, for large 𝑛, the system is governed by its first mode. 
 
Now you can see that the Fibonacci numbers grow approximately with a factor of 1.618. 
 
Finally, to fully solve the problem, we can find the eigenvectors. You can check and find out that these 
are: 

𝑣̅ଵ = ቀ
𝜆ଵ

1
ቁ,    𝑣̅ଶ = ቀ

𝜆ଶ

1
ቁ 

We know that 𝑢ത଴ = ൬
𝐹ଵ

𝐹଴
൰ = ቀ

1
0

ቁ. To complete the solution, we have to represent it as a linear 

combination of the two eigenvectors: 

𝑢ത଴ = ቀ
1
0

ቁ = 𝑐ଵ ቀ
𝜆ଵ

1
ቁ + 𝑐ଶ ቀ

𝜆ଶ

1
ቁ 

 

ቀ
𝜆ଵ 𝜆ଶ

1 1
 ቁ ቀ

𝑐ଵ

𝑐ଶ
ቁ = ቀ

1
0

ቁ 

𝜆ଵ𝑐ଵ + 𝜆ଶ𝑐ଶ = 1 
𝑐ଵ + 𝑐ଶ = 0  →     𝑐ଶ = −𝑐ଵ 

 
𝜆ଵ𝑐ଵ + 𝜆ଶ(−𝑐ଵ) = 1 

𝑐ଵ(𝜆ଵ − 𝜆ଶ) = 1 
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𝑐ଵ =
1

𝜆ଵ − 𝜆ଶ
 

And therefore: 

𝑐ଶ =
1

𝜆ଶ − 𝜆ଵ
 

 
 
6. All real symmetric matrices are diagonalizable 
An important class of matrices are the real symmetric matrices (i.e., 𝐴 = 𝐴்). 
 
Theorem: Any real symmetric matrix is diagonalizable.  
 
We will discuss such matrices in more detail when we talk about orthogonality. 
 
 
7. Left and right eigenvectors 
We haven’t talked about this yet, but I will mention this at the beginning of next class. 
The eigenvectors we talked about so far are also called the right eigenvectors of 𝐴, because they appear 
on the right of the matrix when we write 𝐴𝑣̅ = 𝜆𝑣̅. 
The left eigenvectors also exist. These are the row vectors 𝑤ഥ ் that satisfy: 

𝑤ഥ ்𝐴 = 𝜆𝑤ഥ ் 
(Make sure you understand why multiplying a row vector by a matrix gives another row vector. You can 
think about a row vector simply as a 1 × 𝑚 matrix). 
Interestingly, just as the columns of 𝑃 were the right eigenvectors of 𝐴, the rows of 𝑃ିଵ are the left 
eigenvectors of 𝐴. 
 
Note: The left eigenvectors of 𝐴 are actually the right eigenvectors of 𝐴். This can be easily shown by: 

𝐴𝑣̅ = 𝜆𝑣̅ 
Taking the transpose on both sides, we get: 

(𝐴𝑣̅)் = 𝜆𝑣்̅ 
𝑣்̅𝐴் = 𝜆𝑣்̅ 

So we see that the left and right eigenvectors of 𝐴 actually share the same eigenvalue. 
 
 
Additional resources 
 Useful handouts on eigenvalues and eigenvectors from Harvard, which you can also find on Moodle: 

http://www.math.harvard.edu/archive/20_spring_05/handouts/ch05_notes.pdf 
 A beautiful and useful visualization of the Fibonacci numbers and linear algebra: 

http://setosa.io/ev/eigenvectors-and-eigenvalues/ 
Note also that this is a different way of thinking about the story behind Fibonacci numbers, which 
may be more intuitive in thinking about 𝚤,̂ 𝚥.̂ 
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Another resource I found but haven’t understood yet: 
 A short and interesting paper about imaginary eigenvalues: 

http://vixra.org/pdf/1306.0113v1.pdf 
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