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Linear Algebra – Lesson 7 
Inner product, projection matrix 

1. The dot product 
1.1 Algebraic definition 
We are already familiar with several operations in linear algebra, like matrix-vector multiplication and 
matrix-matrix multiplication. For example, let 𝐴௠×௡ and 𝐵௡×௣ be matrices. What are the dimensions of 
the product 𝐴𝐵? 

 
The result will be of size 𝑚 × 𝑝. That is, the number of rows is determined by the left matrix, and the 
number of columns by the right matrix. 
 
Column vectors are simply 𝑛 × 1 matrices. To multiply two vectors, we treat one as a row vector, and 
multiply using the matrix multiplication rules: 

𝑣்̅𝑤ഥ = 𝑣ଵ𝑤ଵ + 𝑣ଶ𝑤ଶ + ⋯ + 𝑣௡𝑤௡ = ෍ 𝑣௜𝑤௜

௡

௜ୀଵ

 

The result is the sum of the products of the corresponding terms in both vectors. 
This product is usually called dot product, inner product, or sometimes scalar product (to emphasize 
that it results in a scalar). It is denoted 𝑣்̅𝑤ഥ   or  𝑣̅ ∙ 𝑤ഥ   or  ⟨𝑣̅, 𝑤ഥ⟩. 
 
From this definition it is easy to see that the dot product is symmetrical: 

𝑣்̅𝑤ഥ = 𝑤ഥ ்𝑣̅ 
Distributive: 

𝑣்̅(𝑤ഥ + 𝑢ത) = 𝑣்̅𝑤ഥ + 𝑣்̅𝑢ത  
And satisfies: 

(𝑘𝑣̅)்𝑤ഥ = 𝑘𝑣்̅𝑤ഥ  
 
Note: When we calculate the product 𝐴𝐵 of two matrices, every entry is calculated as a dot product of 
one row form 𝐴 and one column from 𝐵. 

 
1.2 Geometric definition 
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The inner product has a geometrical meaning. It is the product of the 
lengths of the two vectors (denoted |𝑣̅| and |𝑤|) times the cosine of the 
angle 𝜃 between them: 

𝑣்̅𝑤ഥ = |𝑣̅||𝑤ഥ| cos(𝜃) 
 
The length of a vector, |𝑣̅|, is usually called the norm of the vector. 
Notice that the inner product can be positive, negative or zero. 
 
Let’s examine some extreme cases: 
1. 𝑣்̅𝑤ഥ = 0 if and only if 𝑣̅ and 𝑤ഥ  are orthogonal (perpendicular, with 𝜃 = 90°). 
2. If 𝑣̅ and 𝑤ഥ  are collinear (with 𝜃 = 0°), then 𝑣்̅𝑤ഥ = |𝑣̅||𝑤ഥ|. 
3. The dot product of a vector with itself gives its norm squared: 𝑣்̅𝑣̅ = |𝑣̅|ଶ. Therefore, 𝑣்̅𝑣̅ ≥ 0. 
4. 𝑣்̅𝑣̅ =  0 if and only if 𝑣̅ = 0. 
 
Length (norm) and angles 
The dot product allows us to define notions such as length and angle for high dimensions. 
The norm of a vector 𝑣̅ ∈ ℝ௡ is defined as the square root of its dot product: 

|𝑣̅| = ඥ𝑣்̅𝑣̅ = ට𝑣ଵ
ଶ + 𝑣ଶ

ଶ+. . +𝑣௡
ଶ 

The norm is used to calculate the distance between two vectors: 

|𝑣̅ − 𝑤ഥ| = ඥ(𝑣ଵ − 𝑤ଵ)ଶ + (𝑣ଶ − 𝑤ଶ)ଶ + ⋯ + (𝑣௡ − 𝑤௡)ଶ 
 
The angle 𝜃 between two vectors in ℝ௡ is defined as: 

cos(𝜃) =
𝑣்̅𝑤ഥ

|𝑣̅||𝑤ഥ|
 

 
Example – Finding an orthogonal vector 
To find an orthogonal vector in 2D, we simply switch the 𝑥 and 𝑦 entries, and change the sign of one of 

them. For example, if 𝑣̅ = ቀ
1
2

ቁ, then 𝑤ഥ = ቀ
−2
1

ቁ is orthogonal to 𝑣̅. 

 
Example – Finding the angle between two vectors 

Let 𝑣̅ = ቀ
1
3

ቁ and 𝑤ഥ = ቀ
−1
0

ቁ. The angle between them is cos(𝜃) = −
ଵ

ଵ∙√ଵ଴
→ 𝜃 = cosିଵ ቀ−

ଵ

√ଵ଴
ቁ 

 
 
What is “𝑣̅ multiplied by 𝑤ഥ?” – a bad question with good answers 
When talking about the product of two vectors, we must define clearly which product we talk about. We 
already know two kinds of vector products: 
1. Column vector times row vector: 𝑣̅𝑤ഥ ்  
2. Dot product (row vector times column vector): 𝑣்̅𝑤ഥ  

The result of each product is fundamentally different. For example: 𝑣̅ = ቀ
1
2

ቁ , 𝑤ഥ = ቀ
−1
3

ቁ 

𝑣̅𝑤ഥ ் = ቀ
1
2

ቁ (−1 3) = ቀ
−1 3
−2 6

ቁ 
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𝑣்̅𝑤ഥ = (1 2) ቀ
−1
3

ቁ = 5 

Whenever you see a series of vector-matrix products, make sure you understand what kind of result you 
are expecting.  For example, what is 𝑥்̅𝐴𝑥̅? It is a scalar, which can be seen as the result of a dot product 
between the vector 𝑥̅ and the vector 𝐴𝑥̅. 
 
1.3 The dot product and projection 
1.3.1 Projection onto a vector 
The dot product is tightly related to the notion of vector projection. 
To find the vector projection of 𝑣̅ onto 𝑤ഥ , we can rewrite 𝑣̅ as the sum of two 
component vectors, one that is parallel to the 𝑤ഥ  and one that is 
perpendicular to the 𝑤ഥ . The parallel vector is the projection of 𝑣̅ onto 𝑤ഥ . 
  
The magnitude of the projection is |𝑣̅| cos(𝜃). Since the projection vector is a 
vector, we have to multiply this magnitude by a unit vector (a vector with norm=1), pointing 

in the direction of 𝑤ഥ , which can be written as ௪ഥ

|௪ഥ |
 (and sometimes written as 𝑤ෝ). The projection vector of 

𝑣̅ onto 𝑤ഥ  is therefore: 

𝑝𝑟𝑜𝑗௪ഥ 𝑣̅ = (|𝑣̅| cos(𝜃))
𝑤ഥ

|𝑤ഥ|
 

Using the geometric definition of the dot product, |𝑣̅||𝑤ഥ| cos(𝜃) = 𝑣்̅𝑤ഥ := 

𝑝𝑟𝑜𝑗௪ഥ 𝑣̅ =
𝑣்̅𝑤ഥ

|𝑤ഥ|ถ
௣௥௢௝.

௠௔௚௡.

𝑤ഥ

|𝑤ഥ|

ฏ

௣௥௢௝.
ௗ௜௥௘௖௧௜௢௡

=
𝑣்̅𝑤ഥ

|𝑤ഥ|ଶ
𝑤ഥ  

 
1.3.2. Projection onto a plane 
We can also project a vector 𝑣̅ onto a plane. In this case too, we decompose 𝑣̅ into a component inside 
the plane and a component orthogonal to the plane: 

 
The orthogonal component is also called the residual (because this is what is left of 𝑣̅ after subtracting 
the projection onto the plane: 𝑣̅ = 𝑣̅௣௥௢௝ + 𝑣̅௢௥௧௛   →     𝑣̅௢௥௧௛ = 𝑣̅ − 𝑣̅௣௥௢௝). 
 
1.3.3 Representing a vector using an orthogonal basis 
We already talked about examples in which we want to represent a vector as a linear combination of 
some new basis vectors (in the Fibonacci Numbers, for example): 

𝑤ഥ = 𝑎ଵ𝑢തଵ + 𝑎ଶ𝑢തଶ + ⋯ + 𝑎௡𝑢ത௡ 
How do we find the coefficients 𝑎௡? 
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To find the coefficients 𝑎௡, we write a matrix equation 𝐴𝑥̅ = 𝑤ഥ , with the columns of 𝐴 being the vectors 

𝑢തଵ, 𝑢തଶ, … , 𝑢ത௡. A solution 𝑥̅ = ൭

𝑎ଵ

…
𝑎௡

൱ gives us the correct coefficients. But there are important cases in 

which the procedure is much simpler: 
 
Let 𝑢തଵ, 𝑢തଶ, … , 𝑢ത௡ ∈ ℝ௡ be nonzero pairwise orthogonal vectors: 

𝑢ത௜
்𝑢ത௝ ൜

= 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗
> 0 𝑓𝑜𝑟 𝑖 = 𝑗

 

Then for any 𝑤ഥ ∈ ℝ௡: 

𝑤ഥ = ቆ
𝑤ഥ ்𝑢തଵ

𝑢തଵ
்𝑢തଵ

ቇ 𝑢തଵ + ቆ
𝑤ഥ ்𝑢തଶ

𝑢തଶ
்𝑢തଶ

ቇ 𝑢തଶ + ⋯ + ቆ
𝑤ഥ ்𝑢ത௡

𝑢ത௡
்𝑢ത௡

ቇ 𝑢ത௡ 

In other words, the coefficient for 𝑢ത௜ are simply the projection of 𝑤ഥ   onto 𝑢ത௜. To prove this, start with 
the general form: 

𝑤ഥ = 𝑎ଵ𝑢തଵ + 𝑎ଶ𝑢തଶ + ⋯ + 𝑎௡𝑢ത௡ 
Multiply the equation by 𝑢ത௜

் from the left (all the terms of the form 𝑢ത௜
்𝑢ത௝ will disappear): 

𝑢ത௜
்𝑤ഥ = 𝑎௜𝑢ത௜

்𝑢ത௜ 

𝑎௜ =
𝑢ത௜

்𝑤ഥ

𝑢ത௜
்𝑢ത௜

 

Note: Multiplying an entire expression by one vector to obtain a simpler term is a very common a useful 
trick you should know. 
 
Symmetric matrices have an orthogonal eigenbasis 
Why is this even useful? Where can we find a basis in which all vectors are orthogonal to each other? 
Well, there is a family of matrices whose eigenvectors are all orthogonal to each other: the symmetric 
matrices.  
For a real 𝑛 × 𝑛 symmetric matrix: 

 All eigenvalues are real 
 You can find 𝑛 linearly independent eigenvectors, which are orthogonal to each other 
 And remember: this means that any real symmetric matrix is diagonalizable. 

 
We will prove this later in the course. 
 
 
2. Orthogonality 
We defined the term orthogonality for pairs of vectors. We can also talk about orthogonal subspaces.   
If 𝑉 and 𝑊 are two orthogonal spaces, then: 

∀ (𝑣̅ ∈ 𝑉, 𝑤ഥ ∈ 𝑊):   𝑣்̅𝑤ഥ = 0 
 
Question: Are the XY plane and the Z axis two orthogonal subspaces? 

Answer: Yes. For any two vector of the form ቆ
𝑥
𝑦
0

ቇ , ൭
0
0
𝑧

൱ we get a dot product of 0. 

 
Question: Are the XY plane and XZ plane orthogonal? 
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Answer: No. For example, the vectors ൭
1
1
0

൱ ∈ 𝑋𝑌 and ൭
1
0
1

൱ ∈ 𝑋𝑍 are not orthogonal. Moreover, some 

vectors are shared by these two subspace. For example, 𝚤 ̂is in both planes, and 𝚤்̂𝚤̂ = 1 > 0. 
 
 
Example – two orthogonal subspaces 
When we dealt with systems of equations, we talked about several subspaces: 𝐼𝑚(𝐴) =

𝑐𝑜𝑙𝑠𝑝(𝐴), 𝑟𝑜𝑤𝑠𝑝(𝐴), ker(𝐴). Which of the two spaces – the column space of 𝐴 or the row space of 𝐴 – 
do you think is orthogonal to ker(𝐴)? 
Well, the row space is orthogonal to the kernel. Let 𝑥̅ ∈ ker(𝐴). Now: 

𝐴𝑥̅ = 0      →         ൮

𝑟𝑜𝑤ଵ 𝑜𝑓 𝐴
𝑟𝑜𝑤ଶ 𝑜𝑓 𝐴

…
𝑟𝑜𝑤௡ 𝑜𝑓 𝐴

൲ 𝑥̅ = ൮

0
0
…
0

൲ 

We see that every row of 𝐴 is orthogonal to 𝑥̅: 
(𝑟𝑜𝑤ଵ𝐴)𝑥̅ = 0 

… 
(𝑟𝑜𝑤௡𝐴)𝑥̅ = 0 

But this means that any linear combination of the rows is also orthogonal to 𝑥̅: 
൫𝑐ଵ(𝑟𝑜𝑤ଵ𝐴) + ⋯ + 𝑐௡(𝑟𝑜𝑤௡𝐴)൯𝑥̅ = 0 

And this means that any vector in the row space of 𝐴 is orthogonal to any vector 𝑥̅ ∈ ker(𝐴). 
Finally, we say that 𝑟𝑜𝑤𝑠𝑝(𝐴) and ker(𝐴) are orthogonal complements in ℝ௡: ker(𝐴) contains all the 
vectors that are orthogonal to 𝑟𝑜𝑤𝑠𝑝(𝐴). 
Note: Using the same proof, we can show that 𝐤𝐞𝐫(𝑨𝑻) is orthogonal to 𝒄𝒐𝒍𝒔𝒑(𝑨) ((which is 𝐼𝑚(𝐴)). 
 
Note: The fact that these two subspaces are orthogonal to each other is related to the rank-nullity 
theorem, which dealt with the dimensions of these spaces. 
  
3. Least squares: Solving 𝑨𝒙ഥ = 𝒃ഥ when it has no solution 
3.1 The problem 
We are given a system of 𝑚 independent equations in 𝑛 unknowns, and 𝑚 > 𝑛 (we have more 
equations than unknowns – such a system is called overdetermined). In general, we expect there to be 
no solution to the system (why? Because exactly 𝑛 equation should suffice for finding a solution. If we 
have more equations, and they are independent of the previous ones, then they hint at a different 
relationship between the variables). 
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Where could we encounter such a case? Data 
fitting is a very common example. We often 
collect data and try to model it using simple 
equations. 
 
For example, let’s say you are recording 
electrophysiological data from a neuron, and 
you are interested in studying how its firing 
rate changes with the input1. By changing the 
input current many times and measuring the 
change in firing rate, you can try and estimate 
the exact parameters that describe the linear 
relationship between the input (the x-axis) and 
the rate of change in the firing rate (the y-axis). 
 
But since any measurement is noisy, in fact there is no line that passes through all the measures points. 
We must therefore look for a solution that will be “best” in some sense. One common choice is to 
choose the line for which the prediction error (for example, the sum of the differences between the 
measured points and their predicted values) is smallest. The prediction errors are also called the 
residuals. 
 
How is this related to linear algebra? Well, if we assume a linear model that relates the input ℎ and the 
firing rate 𝑟̇, we are actually looking for two parameters 𝑥ଵ, 𝑥ଶ such that: 

𝑥ଵℎ + 𝑥ଶ = 𝑟̇ 
For one measurement we can write the following equation: 

(ℎ 1) ቀ
𝑥ଵ

𝑥ଶ
ቁ = 𝑟̇ 

For all 𝑚 measurements we get a system of equations: 

൮

ℎଵ 1
ℎଶ 1
… …

ℎ௠ 1

൲

ᇣᇧᇧᇤᇧᇧᇥ
஺

ቀ
𝑥ଵ

𝑥ଶ
ቁ

ถ
௫̅

= ൮

𝑟̇ଵ

𝑟̇ଶ

…
𝑟̇௠

൲

ᇣᇤᇥ
௕ത

 

Or: 
𝐴𝑥̅ = 𝑏ത 

 

As we already said, this equation has no solution2. We will look for a solution – a parameters vector ቀ
𝑥ଵ

𝑥ଶ
ቁ 

– that minimizes the residuals. Finding this best linear fit is also called linear regression. 
 
Note – 2D problems 
                                                           
1 You will study this model analytically in the course Theoretical and Computational Neuroscience A, when you talk 
about dynamics of rate networks. 
2 When we first learned of such inconsistent systems, we said we could use Gaussian elimination to figure out that 
indeed the system has no solution. Now, we will see how we can still proceed and find some kind of “best” 
solution. 
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While we are dealing with the simplest cast of 1D problems, we often encounter linear regression in 
higher dimensions. For example, one could try and predict a person’s income as a linear combination of 
her seniority and her years of education3 (the observations are shown in red, and the yellow plane 
indicates the linear regression fit to the data): 

 
 
3.2 The solution – Projecting 𝑏ത onto 𝐼𝑚(𝐴) 
The equation 𝐴𝑥̅ = 𝑏ത has no solution because 𝑏ത ≠ 𝐼𝑚(𝐴). We could solve it if 𝑏ത ∈

𝐼𝑚(𝐴). So instead of solving the original equation, we will project 𝑏ത onto 𝐼𝑚(𝐴), 
and solve this new equation. We will denote the projected vector by 𝑏෠ and the 
solution that we find by 𝑥ො (just to remind ourselves that we moved to solving a 
different equation): 

𝐴𝑥ො = 𝑏෠ 
Why is this a good solution? Because it has the property that of all vectors in 
𝐼𝑚(𝐴), it gives us the one that is closest to the original 𝑏ത. 
 
3.3 Projection matrix 
To project 𝑏ത onto 𝐼𝑚(𝐴) means to map it to another vector. We should be able to find a matrix that 
does this. This will be the projection matrix onto 𝐼𝑚(𝐴). 
 
3.3.1 Projection matrix in 1D 
To see how we can construct the projection matrix, let’s start with a 1D example. We want to project 𝑏ത 
onto 𝑎ത: 

 
The projection 𝑏෠ is going to be some multiple of 𝑎ത, so: 𝑏෠ = 𝑥𝑎ത.  
To find the right scalar 𝑥, we demand that the gray residual vector (𝑏ത − 𝑏෠) is orthogonal to 𝑎ത: 

𝑎ത்൫𝑏ത − 𝑏෠൯ = 0 
𝑎ത்𝑏෠ = 𝑎ത்𝑏ത 

                                                           
3 This example is taken from the ISLR book, sixth printing. 
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𝑎ത்(𝑥𝑎ത) = 𝑎ത்𝑏ത 

𝑥 =
𝑎ത்𝑏ത

𝑎ത்𝑎ത
 

(This is actually a proof for the formula we had above for 𝑝𝑟𝑜𝑗௪ഥ 𝑣̅) 
Overall, the projected vector is: 

𝑏෠ = 𝑎ത𝑥 = 𝑎ത
𝑎ത்𝑏ത

𝑎ത்𝑎ത
 

But notice that we can think of it not as a vector (𝑎ത) times a scalar, but as a matrix times a vector: 

𝑏෠ = ቆ
𝑎ത𝑎ത்

𝑎ത்𝑎ത
ቇ

ᇣᇤᇥ
௉

𝑏ത 

This matrix 𝑃 is the projection matrix. 𝑃 takes a vector and projects it onto 𝑎ത. 
 
Properties of any projection matrix 
1. 𝑃 is symmetric: 𝑃் = 𝑃 
2.  𝑃ଶ = 𝑃 (applying the projection twice is the same as applying it once) 
 
 
3.3.2 Projection matrix in higher dimensions 
Now we can go back to projecting 𝑏ത onto the plane. We will use an example in 2D 
to learn the general case of 𝑛-dimensions. 
To represent the plane, we can take two linearly independent vectors that span 
the plane: 𝑎തଵ, 𝑎തଶ. 
How can we find such vectors? 
Well, the plane we’re looking at is just the column space of 𝐴. So 𝑎തଵ, 𝑎തଶ are just 
the columns of 𝐴: 

𝑏෠ = 𝑥ଵ𝑎തଵ + 𝑥ଶ𝑎തଶ = 𝐴𝑥ො 
 
We are looking for the coefficients 𝒙𝟏, 𝒙𝟐that will make the residual perpendicular to the plane: 

𝑒̅ = 𝑏ത − 𝑏෠ should be perpendicular to the plane 
 
So we demand that it is perpendicular to each of the vectors that span the plane: 

𝑎തଵ
்൫𝑏ത −  𝐴𝑥ො൯ = 0 

𝑎തଶ
்൫𝑏ത −  𝐴𝑥ො൯ = 0 

 
Notice that 𝑎തଵ

் is a row vector, and ൫𝑏ത −  𝐴𝑥ො൯ is a column vector. We can rewrite this using matrices: 

ቆ
−𝑎തଵ

் −

−𝑎തଶ
் −

ቇ ൫𝑏ത − 𝐴𝑥ො൯ = ቀ
0
0

ቁ 

𝐴் ൫𝑏ത − 𝐴𝑥ො൯ᇣᇧᇧᇤᇧᇧᇥ
௘̅

= 0 

Now, look at the equation. We demanded that the error 𝑒̅ is orthogonal to the plane (which is 𝐼𝑚(𝐴) =

𝑐𝑜𝑙𝑠𝑝(𝐴)), and we got here that it is in the kernel of 𝐴்: 𝑒̅ ∈ ker(𝐴்). This is exactly what we expected4. 

                                                           
4 Go back a few pages and see that any vector in ker(𝐴்) is orthogonal to any vector 𝐼𝑚(𝐴). 
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This last equation gives us: 
𝐴்𝐴𝑥ො = 𝐴்𝑏ത 

The “formal” solution for 𝑥ො is5: 
𝑥ො = (𝐴்𝐴)ିଵ𝐴்𝑏ത 

This is the solution we were looking for! This is the vector of unknowns in the “new” equation 𝐴𝑥ො = 𝑏෠, 
which does have a solution. 
 
To complete the picture – what is the projected vector 𝑏෠? 

𝑏෠ = 𝐴𝑥ො = 𝐴(𝐴்𝐴)ିଵ𝐴்ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௧௛௘ ௣௥௢௝௘௖௧௜௢௡

௠௔௧௥௜௫

𝑏ത 

Compare the resulting projection matrix to what we found in the 1D case6: 

𝑃ଵ஽ =
𝑎ത𝑎ത்

𝑎ത்𝑎ത
                𝑃ଶ஽ = 𝐴(𝐴்𝐴)ିଵ𝐴் 

 
To summarize, 𝑃 = 𝐴(𝐴்𝐴)ିଵ𝐴் is the projection matrix that projects any vector 𝑏ത onto the column 
space of 𝐴. Of all the vectors in 𝐼𝑚(𝐴), this projection (𝑏෠) is the closest vector to 𝑏ത. 
 
3.4 Linear regression (the least squares solution) 
Let’s look at a concrete example of linear regression (fitting a line) with three measurements. 
Let the measurements (𝑦) as a function of time (𝑡) be (1,1), (2,2), (3,2). No line passes through all these 
points (draw it to convince yourselves). We are looking for the best fitting line, so we model the 
measurements as some linear function: 

𝑦 = 𝑥ଵ + 𝑥ଶ𝑡 
From each point we get one equation: 

𝑥ଵ + 𝑥ଶ = 1 
𝑥ଵ + 2𝑥ଶ = 2 
𝑥ଵ + 3𝑥ଶ = 2 

If we write this in matrix form: 
𝐴𝑥̅ = 𝑏ത 

൭
1 1
1 2
1 3

൱ ቀ
𝑥ଵ

𝑥ଶ
ቁ = ൭

1
2
2

൱ 

As we saw, the “best” solution is the one that we get by projection 𝑏ത onto 𝐼𝑚(𝐴) and solving the new 
system of equations, which gives us: 
 

𝐴்𝐴𝑥ො = 𝐴்𝑏ത 
If we calculate explicitly we get:  

𝐴்𝐴 = ቀ
1 1 1
1 2 3

ቁ ൭
1 1
1 2
1 3

൱ = ቀ
3 6
6 14

ቁ 

                                                           
5 Remember that in real life, you can simply solve the system of equations, without having to calculate the inverse 
explicitly 
6 It seems like we could simplify it like that: 𝐴(𝐴்𝐴)ିଵ𝐴் = 𝐴(𝐴ିଵ(𝐴்)ିଵ)𝐴் = (𝐴𝐴ିଵ)((𝐴்)ିଵ𝐴்) = 𝐼, which 
really doesn’t make any sense. What is the catch then? We can’t use the formula for (𝐴𝐵)ିଵ in this case, because 
𝐴 isn’t square. 
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𝐴்𝑏ത = ቀ
1 1 1
1 2 3

ቁ ൭
1
2
2

൱ = ቀ
5

11
ቁ 

 So we get: 

ቀ
3 6
6 14

ቁ 𝑥ො = ቀ
5

11
ቁ 

And these two equations we can solve: 

𝑥ଵ =
2

3
, 𝑥ଶ =

1

2
 

So the best fitting line is: 

𝑦 =
2

3
+

1

2
𝑡 

 
Why is solving these equations equivalent to the least-squares solution? 
The least squares solution is the solution we get when we demand that the sum of square errors is 
minimized. The errors are just the difference between the modeled data points (𝐴𝑥ො) and the measured 
points (𝑏ത). The sum of squared errors is: 
 

|𝑒̅|ଶ = 𝑒ଵ
ଶ + 𝑒ଶ

ଶ + 𝑒ଷ
ଶ = (𝑥ଵ + 𝑥ଶ − 1)ଶ + (𝑥ଵ + 2𝑥ଶ − 2)ଶ + (𝑥ଵ + 3𝑥ଶ − 2)ଶ 

 
If we didn’t know linear algebra, we could still find the minimum of this squared error. We would take its 
derivative with respect to 𝑥ଵ and demand that it is 0, then take its derivative with respect to 𝑥ଶ and 
demand that it is also 0. For example: 
 

𝜕(|𝑒̅|ଶ)

𝜕𝑥ଵ
= 2(𝑥ଵ + 𝑥ଶ − 1) + 2(𝑥ଵ + 2𝑥ଶ − 2) + 2(𝑥ଵ + 3𝑥ଶ − 2) = 0 

6𝑥ଵ + 12𝑥ଶ − 10 = 0 
3𝑥ଵ + 6𝑥ଶ − 5 = 0 

 
Which is just the first equation in the system of equations we got the linear-algebra way. 
 
5. Orthonormal basis and orthogonal matrices 
We already talked about an orthogonal basis, for which 𝑢തଵ, 𝑢തଶ, … , 𝑢ത௡ ∈ ℝ௡ are nonzero pairwise 
orthogonal vectors: 

𝑢ത௜
்𝑢ത௝ ൜

= 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗
> 0 𝑓𝑜𝑟 𝑖 = 𝑗

 

If the norm of each vector is 1, the basis is called an orthonormal basis. To make it easier to identify, we 
will denote the orthonormal vectors by {𝑞௜}௜ୀଵ

௡ : 
 

𝑞ത௜
்𝑞ത௝ ൜

= 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗
1  𝑓𝑜𝑟 𝑖 = 𝑗

 

This is often written using Kronecker’s delta, 𝛿௜௝ , which is 1 if 𝑖 = 𝑗 and 0 otherwise: 
𝑞ത௜

்𝑞ത௝ = 𝛿௜௝  
The change-of-basis matrix to this orthonomal basis is simply the basis vectors in the columns: 
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𝑄 = ൭
| | | |

𝑞തଵ 𝑞തଶ … 𝑞ത௡

| | | |
൱ 

And it has the special property that: 
𝑄்𝑄 = 𝐼 

Examples 

Let 𝑄 = ൮

ଵ

√ଶ
0

0  1
ଵ

√ଶ
0

 ൲. Then: 𝑄்𝑄 = ቆ
ଵ

√ଶ
0

ଵ

√ଶ

0 1 0
ቇ ൮

ଵ

√ଶ
0

0  1
ଵ

√ଶ
0

 ൲ = ቀ
1 0
0 1

ቁ 

 
Notice that from this example we see that the matrix 𝑄 is not square, but we still get the identity7. 
 
 
5.1 Orthogonal matrices 
Definition: Let 𝑄 be a real square matrix whose columns are pairwise orthogonal unit vectors. Then 𝑄 is 
called an orthogonal matrix. 
This definition is equivalent to saying that: 
 The rows of 𝑄 are pairwise orthogonal unit vectors. 
 𝑄 is invertible, and 𝑄்𝑄 = 𝑄𝑄் = 𝐼. 

 
For example, any permutation matrix and any rotation matrix are orthogonal: 

𝑄 = ൭
0 1 0
1 0 0
0 0 1

൱ ,        𝑄 = ൬
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
൰ 

 
Properties of an orthogonal matrix: 

1. 𝑸ି𝟏 = 𝑸𝑻 (because 𝑄்𝑄 = 𝑄𝑄் = 𝐼) 
2. The columns of 𝑸 are orthogonal. 
3. The rows of 𝑸 are also orthogonal. 

Because 𝑄𝑄் = 𝐼 also tells us that the inner product of every row with every other row is 0 
4. Its determinant is ±𝟏 
5. If preserves the inner product: ⟨𝐴𝑣̅, 𝐴𝑤ഥ⟩ = ⟨𝑣̅, 𝑤ഥ⟩ 

Proof: ⟨𝐴𝑣̅, 𝐴𝑤ഥ⟩ = (𝐴𝑣̅)்(𝐴𝑤ഥ) = 𝑣்̅𝐴்𝐴𝑤ഥ = 𝑣்̅𝑤ഥ = ⟨𝑣̅, 𝑤ഥ⟩ 
6. It preserves the norm (because it preserves the inner product) 
 

Transforms that preserve the inner product 
The 5th property of an orthogonal matrix is not trivial. Other transformations do not preserve the inner 
product. 
 
Example 1 

𝐴 = ቀ
2 0
0 2

ቁ , 𝑣̅ = ቀ
2
0

ቁ , 𝑤ഥ = ቀ
3
1

ቁ 

𝑣்̅𝑤ഥ = 6       but        (𝐴𝑣̅)்(𝐴𝑤ഥ) = (4 0) ቀ
6
2

ቁ = 24 

                                                           
7 What about 𝑄𝑄்? Is it also equal to the identity matrix? Are you sure? 
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Here 𝐴 changed the norm of each vector, and therefore changed the inner product as well. 
 
Example 2 

𝐴 = ቀ
1 2
0 1

ቁ , 𝑣̅ = ቀ
1
0

ቁ , 𝑤ഥ = ቀ
0
1

ቁ 

𝑣்̅𝑤ഥ = 0      but       (𝐴𝑣̅)்(𝐴𝑤ഥ) = (1 0) ቀ
2
1

ቁ = 2 

Here 𝐴 changed both the norm of a vector and the angle between different vectors. 
 
Theorem: The change of basis matrix between two orthonormal bases is an orthogonal matrix. 
 
 
5. Gram-Schmidt orthogonalization process  
Another case where projecting vectors is useful is for constructing an orthonormal basis. 
 
Let 𝑎ത, 𝑏ത, 𝑐̅ be linearly independent vectors (of dimension 𝑛). These vectors span some subspace 𝑈, and in 
fact they are a basis to this subspace. We can use this given basis {𝑎ത, 𝑏ത, 𝑐̅} to construct an orthonormal 
basis. This is done using the Gram-Schmidt orthogonalization process. 
 
We will start by creating three orthogonal vectors, let’s call them {𝑎෤, 𝑏෨, 𝑐̃} and later we will normalize 
them (just divide each vector by its norm, so that its new norm is 1). 
 
Step 1 – orthogonalize 
𝑎ത is fine as it is, so 𝑎෤ = 𝑎ത. 
We move to the next vector. We want to take only that part of 𝑏ത which is 
orthogonal to 𝑎෤. Earlier in the lesson we were interested in the projection of 𝑏ത 
onto 𝑎ത, but now we are interested in the other component. To find it, we just 
have to subtract from 𝑏ത the part that is along 𝑎ത: 

𝑏෨ = 𝑏തୄ = 𝑏ത − 𝑏ത∥ 
Convince yourself geometrically this this is the case. So we get: 

𝑏෨ = 𝑏ത −
𝑎෤்𝑏ത

𝑎෤்𝑎෤
𝑎෤ 

Similarly, to get 𝑐̃ that is orthogonal to both 𝑎෤ and 𝑏෨, we have to subtract from 𝑐̅ its projection on both 
previous vectors we found: 

𝑐̃ = 𝑐̅ −  
𝑎෤்𝑐̅

𝑎෤்𝑎෤
𝑎෤ − 

𝑏෨்𝑐̅

𝑏෨்𝑏෨
𝑏෨ 

Step 2 – normalize 

𝑞തଵ =
𝑎෤

|𝑎෤|
, 𝑞തଶ =

𝑏෨

ห𝑏෨ห
, 𝑞തଷ =

𝑐̃

|𝑐̃|
 

 
And generally, if {𝑣̅ଵ, 𝑣̅ଶ, … , 𝑣̅௡} is a basis of some vector space 𝑉, we can use it to construct an 
orthogonal basis {𝑤ഥଵ, 𝑤ഥଶ, … , 𝑤ഥ௡} for 𝑉: 
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And all that is left is to normalize them to get {𝑞തଵ, 𝑞തଶ, … , 𝑞ത௡}. 
Note: For {𝑞തଵ, 𝑞തଶ, … , 𝑞ത௡} to be a basis for 𝑉, they must be (1) linearly independent, and also (2) they 
must span 𝑉. They are linearly independent because they are orthogonal, and you can show that their 
span is the same as the span of {𝑣̅ଵ, 𝑣̅ଶ, … , 𝑣̅௡}, which completes the proof. 
 
Example – Gram-Schmidt orthogonalization 
The following vectors span some subspace (a plane) in ℝଷ: 

𝑎ത = ൭
1
1
1

൱ , 𝑏ത = ൭
1
0
5

൱ 

We will use them to construct an orthonormal basis for this subspace. 
𝑎෤ = 𝑎ത 

𝑏෨ = 𝑏ത −
𝑎෤்𝑏ത

𝑎෤்𝑎෤
𝑎෤ = ൭

1
0
5

൱ −
6

3
൭

1
1
1

൱ = ൭
−1
−2
3

൱ 

You can check and see that 𝑎෤்𝑏෨ = 0. 
Now all we have to do it normalize each vector: 

𝑞തଵ =
𝑎෤

|𝑎෤|
=

1

√𝑎෤்𝑎෤
𝑎෤ =

1

√3
൭

1
1
1

൱,        𝑞തଶ =
𝑏෨

ห𝑏෨ห
=

1

ඥ𝑏෨்𝑏෨
𝑏෨ =

1

√14
൭

−1
−2
3

൱ 

 
Question: What is the relationship between the span of 𝑎ത, 𝑏ത and the span of 𝑞തଵ,𝑞തଶ? 
Answer: It is the same span. Both pairs of vectors are bases for the same space. 
 
 


