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Linear Algebra – Lesson 9 
Vectors and matrices over the complex numbers 

 
Some motivation 
This lesson is about vector and matrices over the complex numbers (𝑣 ∈ ℂ, 𝐴 ∈ ℂ).  
We’ve seen complex eigenvalues before (do you remember which transformation it was?). 
A strong motivation for studying complex matrices is related to the Fourier transform, which has 
numerous applications in science. It turns out that the Fourier transform can be calculated using matrix-
vector product, defined over the complex numbers. 
 
1. Complex numbers 
A short reminder on complex numbers: 

 A complex number 𝑧 ∈ ℂ is of the form 𝑧 = 𝑎 + 𝑖𝑏, where 𝑎 is the real part of 𝑧, 𝑏 is the 
imaginary part of 𝑧, and 𝑖 is the square root of -1 (i.e., 𝑖ଶ = −1). 

 The complex conjugate (denoted by 𝑧∗ or 𝑧̅) has the same real part, but its imaginary part has 
the opposite sign: 

𝑧 = 𝑎 + 𝑖𝑏,        𝑧∗ = 𝑎 − 𝑖𝑏 
 A complex number can also be represented in polar representation: 

𝑧 = |𝑧|𝑒ఏ 

o |𝑧| = √𝑧∗𝑧 = √𝑎ଶ + 𝑏ଶ is called the norm or amplitude of 𝑧 

o 𝜃 = tanିଵ ቀ



ቁ is called the phase of 𝑧 

Notice that |𝑧| is defined just as we define the norm of a vector in 2D. 
 
 
2. Vectors over the complex numbers 
2.1 Complex vectors 
Complex vector are vectors whose entries are complex numbers. They are also called vectors over the 
complex field (ℂ), or vectors over the complex numbers. For example: 

𝑢ത = ൭
2
3𝑖

4 + 2𝑖
൱,   �̅� = ቀ

2
1

ቁ 

Notice that ℝ ⊂ ℂ, and therefore �̅� ∈ ℂଶ. 
 
Many of the definitions from the real vectors generalize naturally to the complex numbers. For example: 
Vector addition, scalar multiplication (𝑘 ∈ ℂ) and, therefore, also linear combinations: 

𝑢ത = ቀ
2

1 + 𝑖
ቁ , �̅� = ቀ

𝑖
3 + 2𝑖

ቁ,     𝑤ഥ = (1 − 𝑖)𝑢ത + 2�̅� = ቀ
2

8 + 4𝑖
ቁ 

 
2.2 The norm of a complex vector 
Some definitions, however, require adjustments for complex vectors. For example, using our regular 
definition of the vector norm we get: 

�̅� = ൭
1
𝑖
𝑖

൱ , |�̅�|ଶ = �̅�்�̅� = −1 
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But this means that the norm is no longer positive as we want it to be, and it can be zero even for a non-
zero vector. 
 
The vector norm for a complex vector is therefore defined using the complex conjugate of the vector in 
the first entry: 

 |�̅�|ଶ = �̅�∗்�̅� =  𝑣
∗𝑣



ୀଵ

 

The norm now behaves as expected: for each coordinate 𝑖 we get 𝑣
∗𝑣 > 0, and 𝑣

∗𝑣 = 0 ↔ 𝑣 = 0. 
 
 
2. Matrices over the complex numbers 
A complex matrix is a matrix whose entries are complex. 
 
Here again, some new definitions are in order. For example, we know that a real symmetric matrix has 

only real eigenvalues. Now, let 𝐴 be a complex symmetric matrix: 𝐴 = ቀ
1 𝑖
𝑖 0

ቁ. What are its 

eigenvalues? 
det(𝐴 − 𝜆𝐼) = (1 − 𝜆)(−𝜆) + 1 = 𝜆ଶ − 𝜆 + 1 

𝜆ଵ,ଶ =
1 ± √1 − 4

2
 

The eigenvalues are no longer real. In other words, 𝐴் = 𝐴 is not a sufficient condition to make the 
matrix behave well. This leads us to the definition of the conjugate transpose. 
 
2.1 Conjugate complex and conjugate transpose 
The conjugate complex of a matrix 𝐴 is denoted by 𝐴∗ (and sometimes �̅�), for which: (𝐴∗) = 𝑎

∗ . 
 
We already have two hints that tell us it might be useful to define the conjugate transpose of a matrix 
((1) The new definition for a vector norm; (2) The lack of good properties for a matrix that satisfies 𝐴் =

𝐴). 
 
The conjugate transpose of a matrix is obtained by taking the complex conjugate of each entry, and also 
transposing the matrix. It is called the Hermitian transpose, or the adjoint matrix, and it is usually 
denoted by1: 

𝐴ு = (𝐴∗)் = (�̅�)் 
For example: 

𝐴 = ቀ
𝑖 3 + 2𝑖
2 4 − 𝑖

ቁ   →     𝐴ு = ቀ
−𝑖 2

3 − 2𝑖 4 + 𝑖
ቁ 

 
2.1 Hermitian matrices 
A square complex matrix 𝐴 is said to be Hermitian if: 

𝐴ு = 𝐴 
If the matrix 𝐴 is real, then an Hermitian matrix is simply a symmetric matrix. 
 
                                                           
1 And some books use 𝐴∗ to denote the conjugate transpose matrix. 
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Properties of an 𝑛 × 𝑛 Hermitian matrix: 
 All its eigenvalues are real 
 It has 𝑛 independent eigenvectors 

o Hence, it is diagonalizable in ℂ 
 Its eigenvectors are orthogonal to each other (so it is diagonalizable by a unitary matrix; see 2.2) 

 
2.2 Unitary matrices 
A square complex matrix 𝐴 is said to be unitary if: 

𝐴ு = 𝐴ିଵ 
A complex matrix is unitary if and only if its rows (and its columns) form an orthonormal set. 
Note: we haven’t yet defined the inner product for complex vectors, so we still don’t know exactly what 
“orthogonal” means. 
If the matrix 𝐴 is real, then a unitary matrix is simply an orthogonal matrix. 
 
2.3 Normal matrices 
A complex matrix is said to be normal if it commutes with 𝐴ு: 

𝐴𝐴ு = 𝐴ு𝐴 
A matrix is normal if and only if it is diagonalizable by a unitary matrix 𝑈: 

𝑈𝐴𝑈ିଵ = Λ 
 
3. Diagonalization of complex matrices 
3.1 Diagonalizing a complex matrix 
Just like we learned for real matrices, an 𝑛 × 𝑛 complex matrix is diagonalizable if and only if it has 𝑛 
independent eigenvectors. And just like in the real case, eigenvectors associated with distinct 
eigenvalues are linearly independent. 
  
In lesson 05, we found the eigenvalues of the rotation matrix by 90 degrees counterclockwise: 

𝐴 = ቀ
0 −1
1 0

ቁ → 𝜆ଵ = 𝑖, 𝜆ଶ = −𝑖 

Since it has no real eigenvalues, 𝐴 is not diagonalizable over the real field ℝ. But if we treat it as a 
complex matrix, it must be diagonalizable, since it has two distinct eigenvalues. Let’s find the 
eigenvectors: 
 

For 𝜆 = 𝑖 
(𝐴 − 𝑖𝐼)�̅� = 0 

ቀ
−𝑖 −1
1 −𝑖

ቁ ቀ
𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

 
We can solve this using Gaussian elimination, by 
−𝑖𝑅ଵ + 𝑅ଶ → 𝑅ଶ: 

ቀ
−𝑖 −1
0 0

ቁ ቀ
𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

−𝑖𝑣ଵ = 𝑣ଶ 
We can set 𝑣ଵ = 1: 

�̅�ଵ = ቀ
1

−𝑖
ቁ 

For 𝜆 = −𝑖 
(𝐴 + 𝑖𝐼)�̅� = 0 

ቀ
𝑖 −1
1 𝑖

ቁ ቀ
𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

 
We can solve this using Gaussian elimination, by 
𝑖𝑅ଵ + 𝑅ଶ → 𝑅ଶ: 

ቀ
𝑖 −1
0 0

ቁ ቀ
𝑣ଵ

𝑣ଶ
ቁ = ቀ

0
0

ቁ 

𝑖𝑣ଵ = 𝑣ଶ 
We can set 𝑣ଵ = 1: 

�̅�ଶ = ቀ
1
𝑖

ቁ 
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So 𝑃 = ቀ
1 1

−𝑖 𝑖
ቁ. Therefore: 

𝑃ିଵ =
1

det(𝑃)
ቀ

𝑖 −1
𝑖 1

ቁ =
1

2𝑖
ቀ

𝑖 −1
𝑖 1

ቁ 

Let’s verify that we got a diagonal matrix: 

Λ = 𝑃ିଵ𝐴𝑃 =
1

2𝑖
ቀ

𝑖 −1
𝑖 1

ቁ ቀ
0 −1
1 0

ቁ ቀ
1 1

−𝑖 𝑖
ቁ 

=
1

2𝑖
ቀ

𝑖 −1
𝑖 1

ቁ ቀ
𝑖 −𝑖
1 1

ቁ =
1

2𝑖
ቀ

−2 0
0 2

ቁ = ൮
−

1

𝑖
0

0
1

𝑖

൲ 

And since ଵ


=



= −𝑖: 

Λ = ቀ
𝑖 0
0 −𝑖

ቁ 

As expected (notice that the eigenvalues appear in the correct order). 
 
3.2 Complex eigenvalues of real matrices 
Theorem: Let 𝐴 be a real matrix. If 𝜆 is a complex eigenvalue of 𝐴 associated with eigenvector �̅�, then 𝜆∗ 
is also an eigenvalue of 𝐴 associated with the eigenvector �̅�∗. 
In other words, eigenvalues and eigenvectors of real matrices come in conjugate pairs. 
 
Proof 
Assume that: 

(𝐴 − 𝜆𝐼)�̅� = 0 
Take the conjugate from both sides: 

(𝐴 − 𝜆𝐼)∗�̅�∗ = 0 
(𝐴∗ − 𝜆∗𝐼)�̅�∗ = 0 

But since 𝐴 is real: 
(𝐴 − 𝜆∗𝐼)�̅�∗ = 0 

And this equation means that 𝜆∗ is an eigenvalue of 𝐴 with eigenvector �̅�∗. 
 
Note: You can use this property when you solve real problems. You only need to find the eigenvectors of 
one eigenvalue, and easily obtain the eigenvectors of its complex conjugate. 
 
 
3.3 A real symmetric matrix has real eigenvalues 
A special case of a real matrix is a symmetric matrix. We’ve seen before that a real symmetric matrix has 
real eigenvalues. Now we prove it: 

𝐴�̅� = 𝜆�̅� 
 
Make sure you understand where we use the fact that 𝐴 is real and when we use the fact that 𝐴 is 
symmetric: 
 

On the one hand 
 

On the other hand 
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Multiply by �̅�∗் from the left: 
 

𝒗ഥ∗𝑻𝑨𝒗ഥ = 𝝀𝒗ഥ∗𝑻𝒗ഥ 

Take the complex conjugate: 
𝐴�̅�∗ = 𝜆∗�̅�∗ 

 
Transpose: 

�̅�∗்𝐴 = 𝜆∗�̅�∗் 
Multiply by �̅� from the right: 

𝒗ഥ∗𝑻𝑨𝒗ഥ = 𝝀∗𝒗ഥ∗𝑻𝒗ഥ 
 
But this tells us that: 

𝝀𝒗ഥ∗𝑻𝒗ഥ = 𝝀∗𝒗ഥ∗𝑻𝒗ഥ 
And therefore2: 

𝜆 = 𝜆∗   →     𝜆 ∈ ℝ 
 
 
4. Complex eigenvalues lead to spiraling dynamics 
There is something surprising in getting complex eigenvalues for a real matrix. When we deal with real 
matrices, we want to be able to understand them as much as possible in the realm of real numbers. 
 
We already saw that we can diagonalize a 2 × 2 matrix using complex eigenvalues and eigenvectors. 
Now we will see another way of thinking about the matrix, using only real matrices. 
 
Let 𝐴 be a 2 × 2 real matrix with a complex eigenvalue 𝜆 and an associated eigenvector �̅�. Then 𝐴 is 
similar to a rotation-scaling matrix 𝐵: 

𝐴 = 𝐶𝐵𝐶ିଵ 
In other words, we can represent 𝐴 in a new basis (by using the change of basis matrix 𝐶), to obtain a 
matrix 𝐵 that is a rotation-scaling matrix. The forms of 𝐶 and 𝐵 are: 

𝐶 = ቌ

| |

𝑅𝑒(�̅�) 𝐼𝑚(�̅�)
| |

 ቍ , 𝐵 = ൬
𝑅𝑒(𝜆) 𝐼𝑚(𝜆)

−𝐼𝑚(𝜆) 𝑅𝑒(𝜆)
൰ 

where 𝑅𝑒(�̅�) = 𝑅𝑒 ቀ
𝑥 + 𝑦𝑖
𝑧 + 𝑤𝑖

ቁ = ቀ
𝑥
𝑧

ቁ       𝐼𝑚(�̅�) = 𝐼𝑚 ቀ
𝑥 + 𝑦𝑖
𝑧 + 𝑤𝑖

ቁ = ቀ
𝑦
𝑤

ቁ 

Notice that you can choose which of the two eigenvectors (�̅�ଵ or �̅�ଶ) to use. 
 

The scaling factor that 𝐵 induces is: ඥdet(𝐵) = |𝜆|. 
 
Note: the scaling factor of 𝐵 is exactly what we expect it to be. We know that the determinant det (𝐵) is 
the change in volume induced by 𝐵. Since 𝐵 is a 2 × 2 matrix, this means that each of the basis vectors 
is scaled by ඥdet (𝐵). 
 
4.1 Rotation-scaling matrix 
A rotation-scaling matrix is any matrix of the form: 

𝐴 = ቀ
𝑎 −𝑏
𝑏 𝑎

ቁ,       𝑎, 𝑏 ≠ 0, 𝑎, 𝑏 ∈ ℝ 

                                                           
2 In fact, there is another simple proof. If 𝐴 is real, then the characteristic polynomial 𝑓(𝜆) has only real 
coefficients. It takes one line to show that if 𝑓(𝜆) = 0, then also 𝑓(𝜆

∗ ) = 0. 
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Let’s see why it is called a rotation-scaling matrix. 
Any rotation-scaling matrix can be represented as a product of a rotation matrix and a scaling matrix: 

ቀ
𝑎 −𝑏
𝑏 𝑎

ቁ = ቀ
𝑟 0
0 𝑟

ቁ ൬
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
൰ 

With a scaling factor 𝑟 = ඥdet(𝐴) = √𝑎ଶ + 𝑏ଶ. 
 
Let’s prove this: 
First, since we know the scaling factor, we can already factor it out: 

𝐴 = ቀ
𝑎 −𝑏
𝑏 𝑎

ቁ = 𝑟 ൮

𝑎

𝑟
−

𝑏

𝑟
𝑏

𝑟

𝑎

𝑟

൲ = ቀ
𝑟 0
0 𝑟

ቁ ൮

𝑎

𝑟
−

𝑏

𝑟
𝑏

𝑟

𝑎

𝑟

൲ 

The first matrix is a scaling matrix by 𝑟. We need to convince ourselves that the second matrix is a 
rotation. Let’s see where 𝚤 ̂and 𝚥̂ land: 

 

The length of 𝐴𝚤 ̂is ටቀ



ቁ

ଶ
+ ቀ




ቁ

ଶ
= ට

మ

మାమ +
మ

మାమ = 1, and the same for 𝐴𝚥̂, as expected from a 

matrix that only rotates. They also share the same angle 𝜃. You can see that: 

cos(𝜃) =
𝑎

𝑟
 

sin(𝜃) =
𝑏

𝑟
 

So we got: 

𝐴 = ቀ
𝑟 0
0 𝑟

ቁ ൬
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
൰ 

 
We will not prove this theorem, but you can find a short proof here (press the “proof” link under 
“Rotation-Scaling Theorem”). 
 
Example 

Let 𝐴 = ቀ
2 −1
2 0

ቁ 

The eigenvalues of 𝐴 are: 
−𝜆(2 − 𝜆) + 2 = 0 

𝜆ଶ − 2𝜆 + 2 = 0 

𝜆ଵ,ଶ =
2 ± √4 − 8

2
= 1 ± 𝑖 

Since the eigenvalues are complex, we know that 𝐴 can be represented as a rotation-scaling matrix in 
some other basis. To find such a representation, we have to choose one of the eigenvalues, find its 
eigenvector, and follow the theorem above. 
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We will look at 𝜆ଵ = 1 − 𝑖. An eigenvector associated with 𝜆ଵ is: 

�̅� = ቀ
1

1 + 𝑖
ቁ. Now, using the theorem: 

𝐴 = 𝐶𝐵𝐶ିଵ 
Where: 

𝐶 = ቀ𝑅𝑒 ቀ
1

1 + 𝑖
ቁ 𝐼𝑚 ቀ

1
1 + 𝑖

ቁቁ = ቀ
1 0
1 1

ቁ 

𝐵 = ൬
𝑅𝑒(1 − 𝑖) 𝐼𝑚(1 − 𝑖)

−𝐼𝑚(1 − 𝑖) 𝑅𝑒(1 − 𝑖)
൰ = ቀ

1 −1
1 1

ቁ 

 
Question: What does this have to do with spirals? 
Answer: You will answer this yourselves in the exercise. 
 

Additional resources 
A video example for diagonalization of a Hermitian matrix in this video. 
A short review of complex numbers, complex eigenvalues and their geometric interpretation. 
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