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Linear Algebra – Lesson 10 
Vector spaces, inner product spaces 

 
1. Vector spaces 
Today we will properly define the term vector space.  
 
How did we start our course? We defined vectors and their two basic operations: vector addition and 
scalar multiplication. They are what allows for linear combinations. Why does it all boil down to linear 
combinations? Because linear combinations are everywhere in linear algebra: they appear in 𝐴𝑥̅ = 𝑏ത, in 
the definitions of linear independence, of a basis, of the span of a set of vectors etc. 
 
A vector space 𝑉 is a set of vectors over a field 𝐾 (we know two fields, ℝ and ℂ) with a set of rules, such 
that the linear combination of any two vectors in 𝑉 is another vector in 𝑉. 
 
More formally, a vector space must be: 

 Closed under scalar multiplication 
 Closed under vector addition 

 
The presentation shows the 10 axioms that any set 𝑉 must satisfy in order to be a vector space: 
 

 
 
Example – a vector space 
ℝଶ is a vector space, because we can take any linear combination of two vectors, and get a new vector 
in ℝଶ. So is ℂଷ, for example. 
 
Example – not a vector space 
The positive quarter of ℝଶ is not a vector space. Is it closed under vector addition? Yes. But is it closed 
under scalar multiplication? Not at all, because −𝑣̅ is already outside the positive quarter of ℝଶ. 
 
1.2 Vector subspace 
1.2.1 Vector subspace definition 
Sometime we can take a subset 𝑈 of a vector space 𝑉, and still get a vector space. 
Given a vector space 𝑉, a subset 𝑈 of 𝑉 is a vector subspace if it satisfies the following conditions: 

1. 𝑈 is closed under addition: for any 𝑣̅, 𝑢ത ∈ 𝑈, also (𝑣̅ + 𝑢ത) ∈ 𝑈 
2. 𝑈 is closed under scalar multiplication: for any 𝑢ത ∈ 𝑈 and scalar 𝑘, also 𝑘𝑢ത ∈ 𝑈. 

Notice that this means that 𝑈 includes the zero vector  
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Example – a subspace 

The span of 𝑣̅ = ቀ
1
2

ቁ – 𝑠𝑝(𝑣̅) – is a vector subspace in ℝଶ. It includes all scalar multiplications of 𝑣̅, and 

therefore it is closed under scalar multiplication and vector addition. Importantly, it also includes the 
zero vector. 
 

Even the zero vector ቀ0
0

ቁ by itself a vector subspace. 

 
1.2.2 The four fundamental subspaces 
We already know the four fundamental subspaces associated with an 𝑚 × 𝑛 matrix: 

1. Column space of 𝐴: 𝑐𝑜𝑙𝑠𝑝(𝐴), 𝐼𝑚(𝐴) 
𝑆𝑝({𝑐ଵ̅, 𝑐ଶ̅, … , 𝑐௡̅}) 

2. Row space of 𝐴: 𝑟𝑜𝑤𝑠𝑝(𝐴) 
𝑆𝑝({𝑟̅ଵ, 𝑟̅ଶ, … , 𝑟̅௠}) 

3. Kernel of 𝐴, nullspace of 𝐴: ker(𝐴) 
{𝑥̅|𝐴𝑥̅ =  0} 

4. Left nullspace of 𝐴: ker(𝐴்) 
 

{𝑦ത|𝐴்𝑦ത = 0}  or equivalently  {𝑦ത|𝑦ത்𝐴 = 0} 
 
Example 
Prove that ker(𝐴) is a vector subspace. 
 
1.3 Matrices vector space 
The axioms that define a vector space allow us to talk about more abstract vector spaces than we had so 
far. For example, the set of real 2 × 2 matrices is a vector space. A basis for this space is: 

𝑀ଵ = ቀ
1 0
0 0

ቁ , 𝑀ଶ = ቀ
0 1
0 0

ቁ , 𝑀ଷ = ቀ
0 0
1 0

ቁ , 𝑀ସ = ቀ
0 0
0 1

ቁ 

We can represent any 2 × 2 matrix as a linear combination of these basis “vectors”: 

ቀ
𝑎 𝑏
𝑐 𝑑

ቁ = 𝑎𝑀ଵ + 𝑏𝑀ଶ + 𝑐𝑀ଷ + 𝑑𝑀ସ 

It includes the zero vector ቀ0 0
0 0

ቁ. And we have already defined matrix addition and scalar 

multiplication for matrices. 
 
 
2. Polynomial space 𝑷𝒏(𝒙) 
2.1 Polynomials as vectors 
𝑃௡(𝑥) is the set of all polynomials of degree smaller or equal to 𝑛: 
 

𝑝(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎௡𝑥௡ 
 
with coefficients 𝑎௜  in the field 𝐾. 
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𝑃௡(𝑥) is a vector space, with vector addition and scalar multiplication defined as the usual addition and 
multiplication operations we know. A “vector” in 𝑃௡(𝑥) is simply a polynomial (the zero vector here 
would be just 0). 
 
For example, let 𝑝(𝑥) = 1 + 𝑥ଶ and 𝑞(𝑥) = 2 + 2𝑥ସ. We can define linear combinations in this space 
like that: 

𝑝(𝑥) + 𝑞(𝑥) = 3 + 𝑥ଶ + 2𝑥ସ 
2𝑝(𝑥) = 2 + 2𝑥ଶ 

  
Question: What is the dimension of the vector space 𝑃௡(𝑥)? 
Answer: The set 𝑆 = {1, 𝑥, 𝑥ଶ, … , 𝑥௡} is a basis to 𝑃௡(𝑥). We will call these basis vectors 𝑒̂଴, 𝑒̂ଶ, … , 𝑒̂௡. 
Any polynomial of degree less than or equal to 𝑛 can be expressed as a linear combination of these 
powers of 𝑥 (so they span 𝑃௡(𝑥)) and you can also show that they are linearly independent. Since this 
basis has 𝑛 + 1 elements in it, the dimension of 𝑃௡(𝑥) is 𝑛 + 1. 
 
2.1.1 Mapping polynomials to vectors in ℝ௡ 
We are still used to thinking about vectors as arrows in space, or as a list of numbers. Notice that in this 
case of polynomials, we can “translate” between a polynomial and a “regular” vector. Specifically, we 
can map each polynomial to a vector in ℝ௡:  
 

𝑝(𝑥) →

⎝

⎜
⎛

1
0
1
0
0⎠

⎟
⎞

, 𝑞(𝑥) →

⎝

⎜
⎛

2
0
0
0
2⎠

⎟
⎞

 

with the basis vectors we defined above, so: 
𝑝(𝑥) = 𝑒̂଴ + 𝑒̂ଶ 

𝑞(𝑥) = 2𝑒̂଴ + 2𝑒̂ସ 
 
2.2 Linear operators on polynomials 
Back in ℝଶ we studied linear transformations that took a vector as input and gave another vector as 
output. We defined a matrix as the coordinate-based representation of a linear transformation (like a 
rotation-scaling matrix, a shear matrix etc). 
 
What are linear transformations in the case of polynomials? They take as input a polynomial and give as 
output another polynomial. In this context, when the vectors are actually functions, we usually call the 
linear transformation a “linear operator”. 
 
2.2.1 The derivative as a linear operator 
The derivative is a linear operator as it satisfies both conditions of linearity: 

𝑑

𝑑𝑥
൫𝑘𝑓(𝑥)൯ = 𝑘𝑓ᇱ(𝑥) 

𝑑

𝑑𝑥
൫𝑓(𝑥) + 𝑔(𝑥)൯ = 𝑓ᇱ(𝑥) + 𝑔ᇱ(𝑥) 
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Since we now have a vector space of polynomials, we should be able to represent this linear operator 
using a matrix. To build this matrix, we only need to find where each basis vector is mapped to. We 
denote the derivative operator as ℒ, and the basis vectors as 𝑒̂଴, 𝑒̂ଵ, … , 𝑒̂௡. Then: 
 

ℒ(𝑒̂଴) =
ௗ

ௗ௫
(1) = 0                ℒ(𝑒̂ଵ) =

ௗ

ௗ௫
(𝑥) = 1 = 𝑒̂଴                ℒ(𝑒̂ଶ) =

ௗ

ௗ௫
(𝑥ଶ) = 2𝑥 = 2𝑒̂ଵ 

And in general:  
ℒ(𝑒̂௞) = 𝑘𝑒̂௞ିଵ 

The matrix representation of the derivative operator is therefore: 

𝐴 = ൮

0 1 0 0
0 0 2 0
0 0 0 3
… … … …

൲ 

 
3. Vector space of real functions over [𝟎, 𝟏] 
Not only polynomials make up a vector space. We can define a vector space for other functions as well. 
For example, the space of continuous real functions on the interval [0,1]. You can check and see that the 
axioms of a vector space hold here as well. 
 
Here the vectors are functions (𝑓(𝑥), 𝑔(𝑥), …).  
 
Notice that we can’t represent these vectors as a list of numbers as we are used to, because this vector 
space is not finite. In fact, we haven’t even defined a proper basis for this space. However, one can 
define a basis for this space, using sines and cosines. This is the idea behind the Fourier transform, which 
is discussed in detail in ELSC’s Calculus course. 
 
 
4. Inner product spaces 
When we defined a vector space, we only cared about linear combinations. One operation we haven’t 
discussed in this context is the inner product (or dot product). Indeed, different inner products can be 
defined for the same vector space, provided that they satisfy the required properties.  
 
Definition: An inner product space is a vector space 𝑉 along with an inner product defined on it. 
  
4.1 The inner product for real vector spaces 
For a vector space 𝑉 over ℝ, the inner product is a mapping of any pair of vectors 𝑣̅, 𝑤ഥ  in 𝑉 to a real 
scalar. An inner product must satisfy the following properties: 

1) Symmetric: 
⟨𝑣̅, 𝑤ഥ⟩ =  ⟨𝑤ഥ, 𝑣̅⟩ 

2) Linear in the first argument: 
⟨𝜆ଵ𝑣̅ଵ + 𝜆ଶ𝑣̅ଶ, 𝑤ഥ⟩ = 𝜆ଵ⟨𝑣̅ଵ, 𝑤ഥ⟩ + 𝜆ଶ⟨𝑣̅ଶ, 𝑤ഥ⟩ 

This is often presented as two axioms: 
I. Additivity: ⟨𝑣̅ + 𝑢ത, 𝑤ഥ⟩ = ⟨𝑣̅, 𝑤ഥ⟩ + ⟨𝑢ത, 𝑤ഥ⟩ 

II. Homogeneity: ⟨𝜆𝑣̅, 𝑤ഥ⟩ = 𝜆⟨𝑣̅, 𝑤ഥ⟩ 
 

3) Positive definite:  
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0 ≤ ⟨𝑣̅, 𝑣̅⟩     𝑎𝑛𝑑     ⟨𝑣̅, 𝑣̅⟩ = 0  𝑖𝑓𝑓  𝑣̅ =  0 
 
Using these properties, you can show that the inner product in a vector space over ℝ is also linear in the 
second argument. 
 

4.2 The inner product and similarity measures 

An inner product is a useful tool when we want to measure vectors (using norms) or to quantify their 
similarity. This is done using the distance between them or the angle between them. The latter method 
is often called cosine similarity. 
 
[See the Lesson 10 presentation for a few slides about word2vec and about vector space embedding of 
brain connectomes] 

 
4.3 The inner product for complex vector spaces 
In the previous lesson, we saw that the inner product does not satisfy the desired conditions in the case 
of complex vectors. Using the norm of a vector as a case study, we defined the inner product for 
complex vectors as1: 

⟨𝑣̅, 𝑤ഥ⟩ = 𝑣̅ு𝑤ഥ = 𝑣̅∗்𝑤ഥ  
 
In general, an inner product for a vector space 𝑉 over ℂ is a mapping of any pair of vectors 𝑣̅, 𝑤ഥ  in 𝑉 to a 
complex scalar. A complex inner product must satisfy the following properties: 
 

1) Conjugate symmetric (also called Hermitian): 
⟨𝑣̅, 𝑤ഥ⟩ =  ⟨𝑤ഥ, 𝑣̅⟩∗ 

2) Conjugate linear in the first argument: 
⟨𝜆ଵ𝑣̅ଵ + 𝜆ଶ𝑣̅ଶ, 𝑤ഥ⟩ = 𝜆ଵ

∗ ⟨𝑣̅ଵ, 𝑤ഥ⟩ + 𝜆ଶ
∗ ⟨𝑣̅ଶ, 𝑤ഥ⟩ 

This is often presented as two axioms: 
I. Additivity: ⟨𝑣̅ + 𝑢ത, 𝑤ഥ⟩ = ⟨𝑣̅, 𝑤ഥ⟩ + ⟨𝑢ത, 𝑤ഥ⟩ 

II. Conjugate homogeneity: ⟨𝜆𝑣̅, 𝑤ഥ⟩ = 𝜆∗⟨𝑣̅, 𝑤ഥ⟩ 
 

3) Positive definite:  
0 ≤ ⟨𝑣̅, 𝑣̅⟩     𝑎𝑛𝑑     ⟨𝑣̅, 𝑣̅⟩ = 0  𝑖𝑓𝑓  𝑣̅ =  0 

Notice that in general ⟨𝑣̅, 𝑤ഥ⟩ ∈ ℂ, but ⟨𝑣̅, 𝑣̅⟩ ∈ ℝ.  
 
Question: What about the linearity in the second argument? 
Answer: We use the first two properties to test for additivity and homogeneity: 

⟨𝑣̅, 𝑤ഥ + 𝑢ത⟩ = ⟨𝑤ഥ + 𝑢ത, 𝑣̅⟩∗ = ⟨𝑤ഥ, 𝑣̅⟩∗ + ⟨𝑢ത, 𝑣̅⟩∗ = ⟨𝑣̅, 𝑤ഥ⟩ + ⟨𝑣̅, 𝑢ത⟩ 
⟨𝑣̅, 𝑘𝑤ഥ⟩ = ⟨𝑘𝑤ഥ, 𝑣̅⟩∗ = (𝑘∗⟨𝑤ഥ, 𝑣̅⟩)∗ = 𝑘⟨𝑤ഥ, 𝑣̅⟩∗ = 𝑘⟨𝑣̅, 𝑤ഥ⟩ 

So the complex inner product is linear in the second argument.  

                                                           
1 Some books define the inner product for complex vectors with the complex conjugate in the second argument 
rather than the first:  

⟨𝑣̅, 𝑤ഥ⟩ = 𝑣்̅𝑤ഥ ∗ 
Here I preferred the above definition to fit the definition used in MATLAB using the dot function. 
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4.2.1 Lengths and angles 
The norm of a vector 𝑣̅ is defined using the complex inner product (as we saw before): 

|𝑣̅| = ඥ⟨𝑣̅, 𝑣̅⟩ 
The angle between two vectors 𝑣̅ and 𝑤ഥ  is defined using the real part of the complex inner product: 

|𝑣̅||𝑤ഥ| cos(𝜃) = ℛ(⟨𝑣̅, 𝑤ഥ⟩) 
 
4.3 Other inner product spaces 
The two inner products we have seen so far were rather similar. 
The inner product can also have quite a different form. For example, we mentioned the vector space of 
real functions over the interval [0,1]. In this infinite vector space, the inner product is no longer defined 
using sums (and the Σ notation). Instead, it is defined using the integral: 

⟨𝑓, 𝑔⟩ = න 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
ଵ

଴

 

For example, you can calculate ⟨𝑓, 𝑔⟩ for 𝑓(𝑥) = 3𝑥 − 5 and 𝑔(𝑥) = 𝑥ଶ and find the ⟨𝑓, 𝑔⟩ = −
ଵଵ

ଵଶ
. 

 
Do the properties of an inner product hold? We will check for two general function 𝑓, 𝑔 define over 
[𝑎, 𝑏]. 
 
Symmetric: 

⟨𝑓, 𝑔⟩ = න 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
௕

௔

= න 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
௕

௔

= ⟨𝑔, 𝑓⟩ 

 
Linear in the first argument: 

⟨𝑘ଵ𝑓ଵ + 𝑘ଶ𝑓ଶ, 𝑔⟩ = න ൫𝑘ଵ𝑓ଵ(𝑥) + 𝑘ଶ𝑓ଶ(𝑥)൯𝑔(𝑥)𝑑𝑥
௕

௔

= න ൫𝑘ଵ𝑓ଵ(𝑥)𝑔(𝑥) + 𝑘ଶ𝑓ଶ(𝑥)𝑔(𝑥)൯𝑑𝑥
௕

௔

= 𝑘ଵ න 𝑓(𝑥)ଵ𝑔(𝑥)𝑑𝑥
௕

௔

+ 𝑘ଶ න 𝑓(𝑥)ଶ𝑔(𝑥)𝑑𝑥
௕

௔

= 𝑘ଵ⟨𝑓ଵ, 𝑔⟩ + 𝑘ଶ⟨𝑓ଶ, 𝑔⟩ 

 
Positive definite: 
 

⟨𝑓, 𝑓⟩ = න 𝑓(𝑥)𝑓(𝑥)𝑑𝑥
௕

௔

= න ൫𝑓(𝑥)൯
ଶ

𝑑𝑥
௕

௔

≥ 0 

In addition: 

⟨𝑓, 𝑓⟩ = 0  ↔   න ൫𝑓(𝑥)൯
ଶ

𝑑𝑥
௕

௔

= 0  ↔   ൫𝑓(𝑥)൯
ଶ

= 0  ↔   𝑓(𝑥) = 0 

 
Example – orthogonal functions 
We’ve seen orthogonal functions before, when we talked about the vector space of polynomials. For 
real continuous functions over [−𝜋, 𝜋] the following pair of functions are orthogonal: 

𝑓(𝑥) = cos(𝑥) 
𝑔(𝑥) = sin(𝑥) 
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To see this calculate their inner product: 

⟨𝑓, 𝑔⟩ =  න cos(𝑥) sin (𝑥)𝑑𝑥
గ

ିగ

= න
1

2
sin(2x)𝑑𝑥

గ

ିగ

=
1

2

− cos(2𝑥)

2
ቤ

ିగ

గ

= −
1

4
(cos(2𝜋) − cos(−2𝜋)) = 0 

 
In fact, the functions 1, cos(𝑥) , cos(2𝑥) , cos(3𝑥) … , sin(𝑥) , sin(2𝑥) , sin(3𝑥) … form an orthogonal 
basis for the space of square integrable functions over [−𝜋, 𝜋] (those of you taking ELSC’s calculus 
course may have already proved this). 
 
These functions are called the harmonic functions, and they are at the heart of Fourier analysis, which is 
used in almost any application of digital signal processing. 
 


