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Linear Algebra – Lesson 11 
The four fundamental subspaces 

 
1. Some motivation – the inverse matrix 
Early in the course (lesson 4) we talked about the inverse matrix. For a real 𝑛 × 𝑛 matrix 𝐴 we said that 
the inverse matrix 𝐴ିଵ exists if the following equivalent conditions are met: 

 det(𝐴) ≠ 0 
 The columns of 𝐴 are linearly independent 
 dim൫𝐼𝑚(𝐴)൯ = 𝑛 
 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 
 𝐴 is full-rank 
 ker(𝐴) = {0} (the nullspace of 𝐴 has only the zero vector) 

 
But what if our matrix is 𝑚 × 𝑛? 
Today we will see if we can define an inverse matrix for an 𝑚 × 𝑛 matrix (spoiler alert: we can’t, but we 
will define a left-inverse or a right-inverse). 
 
 
2. Rectangular 𝒎 × 𝒏 matrices 

  Watch the footnote video in the 3blue1brown series, “Nonsquare matrices as transformations between 
dimensions”. 
 
Let 𝐴 be an 𝑚 × 𝑛 matrix. For example: 

𝐴 = ൭
1 2
2 0
0 3

൱ 

 
This matrix takes as input a vector 𝑣̅ ∈ ℝଶ and gives as output a vector (𝐴𝑣̅) ∈ ℝଷ. 
Given a matrix, we immediately think of its input space (ℝ௡) and its output space (ℝ௠). 
 
If we think about it geometrically, we can see that 𝐴 takes all vectors in the 2D space ℝଶ, and maps 
them to the 3D space ℝଷ. Since any result 𝐴𝑣̅ is a linear combination of the columns of 𝐴, the result is 
some plane in ℝଷ. This plane is 𝐼𝑚(𝐴). 
  
In fact, 𝐴 does more than that. It divides each of these vector spaces into two subspaces. We say that 𝐴 
induces four vector subspaces, which we call the four fundamental subspaces. In this lesson, we will 
spend some time on understanding the different subspaces and the relations between them. 
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3. The four fundamental subspaces 
In class, we built together this schematic diagram of the four fundamental subspaces: 

 
The four fundamental subspaces. 𝑟𝑜𝑤𝑠𝑝(𝐴) and 𝑘𝑒𝑟(𝐴) are orthogonal subspaces, 
and together (by taking all possible linear combinations of their vectors) they make 
up the entire input space ℝ௡. Similarly, 𝑐𝑜𝑙𝑠𝑝(𝐴) and 𝑘𝑒𝑡(𝐴்) are orthogonal 
subspaces, and together they make up the entire output space ℝ௠. 

 
3.1 Column space 
The column space, 𝑐𝑜𝑙𝑠𝑝(𝐴) = 𝐼𝑚(𝐴), is the set of all linear combinations of the columns of 𝐴. Since 
each column has 𝑚 entries, 𝑐𝑜𝑙𝑠𝑝(𝐴) ⊆ ℝ௠. 
 
3.2 Row space 
Similarly, the row space, 𝑟𝑜𝑤𝑠𝑝(𝐴) is the set of all linear combinations of the rows of 𝐴. Since each row 
has 𝑛 entries, 𝑟𝑜𝑤𝑠𝑝(𝐴) ⊆ ℝ௡. 
 
3.3 Kernel, null space 
The kernel of 𝐴, ker(𝐴), also called the null space of 𝐴, is the set of all input vectors that 𝐴 maps to zero. 
Therefore, ker(𝐴) ⊆ ℝ௡. 
In one of the exercises, you proved that the null space and row space are orthogonal to each other. In 
fact, they are called orthogonal complements, because together they span the entire ℝ௡ space (what is 
the single vector that they share?)1. 
 
3.4 The left null space 
The left null space consists of all vectors 𝑦ത such that: 

𝑦ത்𝐴 = 0 
It is also called the kernel of 𝐴், since taking the transpose of both sides gives: 

𝐴்𝑦ത = 0 
Since each column of 𝐴 (and therefore each row of 𝐴்) has 𝑚 entries, ker(𝐴்) ⊆ ℝ௠. 
We have previously shown that ker(𝐴்) is orthogonal to 𝑐𝑜𝑙𝑠𝑝(𝐴). In fact, they are also orthogonal 
complements, because together they span the entire ℝ௠ space. 
  

                                                           
1 What does it mean that “together they span the entire ℝ௡ space? This is not to say that any vector is either in 
𝑟𝑜𝑤𝑠𝑝(𝐴) or in ker(𝐴). The idea is that any vector in ℝ௡ can be decomposed into a component in 𝑟𝑜𝑤𝑠𝑝(𝐴) and 
an orthogonal component in ker(𝐴). 
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A note about dimensions 
This rank-nullity theorem states that the dimension of both the column space and the row space is equal 
to the rank of the matrix: 

dim൫𝑐𝑜𝑙𝑠𝑝(𝐴)൯ = dim൫𝑟𝑜𝑤𝑠𝑝(𝐴)൯ = 𝑟 
Therefore, you can now see that the dimension of the null spaces must be: 

dim(ker(𝐴)) = 𝑛 − 𝑟 
dim(ker(𝐴்)) = 𝑚 − 𝑟 

 
3.5 The abstract picture and the geometric picture (of the four 
fundamental subspaces) 
Our first example above was a 3 × 2 matrix. A schematic 
representation of what this matrix does is shown on the right – it 
maps the 2D plane to some plane in 3D space. 
 
Question: Where is each one of the spaces in this geometric picture? 
Answer: 

 The row space is the entire input space ℝଶ. 
 ker(𝐴) is only the zero vector in ℝଶ. No other vector is mapped to zero, because the columns of 

𝐴 are linearly independent (and this is why we end up with a plane in ℝଷ). 
 𝑐𝑜𝑙𝑠𝑝(𝐴) is 𝐼𝑚(𝐴), and that is the plane illustrated on the right (notice that it must include the 

origin, as it must include the zero vector). 
 ker(𝐴்), the left null space, is all the vectors in ℝ௠ that are orthogonal to 𝐼𝑚(𝐴). This is the line 

of vectors that goes through the origin, and is orthogonal to the blue plane. 
 
Question: Is the transformation 𝐴 from the previous illustration invertible? 
Answer: First, remember that an inverse matrix exists only for square matrices. However, let’s see if the 
transformation is invertible in some sense. Let an output vector 𝐴𝑣̅ be a vector in 𝐼𝑚(𝐴), in the blue 
plane. Since each original 2D vector was mapped to a unique vector in ℝଷ, we can “undo” this 
transformation, and recover 𝑣̅. In other words, 𝐴 has a left inverse: 

𝐴௟௘௙௧
ିଵ 𝐴𝑣̅ = 𝑣̅ 

 
However, strictly speaking, 𝐴 is not invertible since it does not have a right-inverse. See a note about the 
existence of right- and left- inverse below (4.2). 
 
Conclusions from Ex11. Why is I-P a projection matrix? 
 
4. Left-inverse and right-inverse 
4.1 Left and right inverse 
Back to the inverse matrix. The inverse matrix 𝐴ିଵ exists if and only if: 

𝑟 = 𝑚 = 𝑛 
It is also called a two-sided inverse matrix, since: 𝐴𝐴ିଵ = 𝐴ିଵ𝐴 = 𝐼. 
In this case, 𝐴 is called a full-rank matrix. This is the special case in which ker(𝐴) = {0} and also 
ker(𝐴்) = {0}. No vector is mapped to 0 (except for the zero vector), and there exists an inverse matrix. 
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A rectangular matrix cannot have a left-inverse and a right-inverse. Why? 
Because once you have more rows (or more columns), then they are necessarily linearly dependent. 
Therefore, they induce some null space, and this null space “spoils” everything and doesn’t allow to go 
back to the original vector2. 
 
4.2 𝐴்𝐴 and the four fundamental subspaces 
We’ll take a short detour talking about 𝐴்𝐴 and that will help us in learning about the left inverse and 
right inverse in the next section. 
We have seen the matrix 𝐴்𝐴 come out before, for example when we discussed the least squares 
solution to an overdetermined system 𝐴𝑥̅ = 𝑏ത, and reached the following equation: 

𝐴்𝐴𝑥̅ = 𝐴்𝑏ത 
 We now prove some properties of 𝐴்𝐴. 
 
Theorem I: The null space of 𝐴்𝐴 is the same as the null space of 𝐴. 
 
Proof: First, we reformulate the question. We want to prove that if 𝐴்𝐴𝑥̅ = 0 then also 𝐴𝑥̅ = 0 (the 
other direction is trivial – can you see why?). So: 

𝐴்𝐴𝑥̅ = 0 
Multiply from the left by 𝑥்̅: 

𝑥்̅𝐴்𝐴𝑥̅ = 0 
But this is just the inner product between a vector and itself: 

⟨𝐴𝑥̅, 𝐴𝑥̅⟩ 
And the norm of a vector is 0 if only if it is the zero vector, so: 

𝐴𝑥̅ =  0 
 
Theorem II: 𝐴்𝐴 is invertible if and only if 𝐴 has independent columns. 
 
Proof3 
Direction 1 
We know that 𝐴்𝐴 is invertible, so ker(𝐴்𝐴) = {0}. 
According to theorem I, also ker(𝐴) = {0}. Hence, the columns of 𝐴 are independent. 
 
Direction 2 
Given: The columns of 𝐴 are independent (i.e., ker(𝐴) = {0}). 
To prove that 𝐴்𝐴 is invertible, we will show that ker(𝐴்𝐴) = {0}. 
Assume that for some 𝑥̅: 𝐴்𝐴𝑥̅ = 0. We will show that necessarily 𝑥̅ = 0. 
Multiply by 𝑥்̅ from the left: 

𝑥்̅𝐴்𝐴𝑥̅ = 0 
Which implies (just like in the proof for Theorem I): 

𝐴𝑥̅ = 0 

                                                           
2 If thinking about the right inverse confuses you, wait until you read the end of 4.2.2, and then come back here. 
3 In a proof of the form “x is true if and only id y is true”, we have to divide the proof in two: (1) assume x and 
prove y, and (2) assume y and prove x. 
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And according to what is given, this forces 
𝑥̅ = 0∎ 

 
4.2.1 Left inverse (full column-rank) 
In order to have a left inverse, we must require that 𝐴 sends 
no vector to zero except for the zero vector itself. In other 
words, ker(𝐴) = {0}. 
Such a matrix is called full column-rank. The columns of 𝐴 are 
independent, and we get: 

𝑟 = 𝑛 < 𝑚 
 
How many solutions does 𝐴𝑥̅ = 𝑏ത have? This was the case of a unique solution or no solution at all. 
You can see the reason for this in the illustration. If there is a solution, it is unique. Here are some 
justifications to why this is true: 

 𝑏ത ∈ ℝ௠. Having a solution 𝑥̅ means that 𝑏ത ∈ 𝑐𝑜𝑙𝑠𝑝(𝐴). In other words, 𝑏ത is a linear combination 
of the columns of 𝐴. Since the columns are independent, we have no freedom in choosing the 
appropriate linear combination that gives 𝑏ത. Hence, there is only one such combination. 

 When there are infinite solutions, each solution can be written as the sum of a particular 
solution plus some solution of the homogeneous system 𝐴𝑥̅ = 0: 

𝑥̅ = 𝑥̅௣ + 𝑥̅𝒩 
In other words, they require that ker(𝐴) will have more vectors in it, and not only the zero 
vector like we have here. 
 

On the other hand, if 𝑏ത ∉ 𝑐𝑜𝑙𝑠𝑝(𝐴), we have no solution at all. 
 
Now, how can we find the left inverse 𝐴௟௘௙௧

ିଵ ? This is where 𝐴்𝐴 comes in. Theorem II above tells us that 
in this case 𝐴்𝐴 is invertible. We can use this to obtain a formula for 𝐴௟௘௙௧

ିଵ : 
𝐴௟௘௙௧

ିଵ = (𝐴்𝐴)ିଵ𝐴் 
Let’s check that this formula really gives us the left inverse: 

𝐴௟௘௙௧
ିଵ 𝐴 = (𝐴்𝐴)ିଵ𝐴்𝐴 = 𝐼௡×௡ 

Notice how Theorem II (“if A is full column-rank, then (𝐴்𝐴)ିଵ exists”) is necessary here. 
What about a right inverse for 𝐴 in this case? 
 
A friend from the past 
What happens if we try to use 𝐴௟௘௙௧

ିଵ  as a right inverse? 
𝐴𝐴௟௘௙௧

ିଵ = 𝐴(𝐴்𝐴)ିଵ𝐴் 
 
This is exactly the projection matrix onto 𝐼𝑚(𝐴), which we have seen before.  
 
Question: How did that happen? Why does it make sense that we got the projection matrix? 
Answer: We will think about this together in class. Try thinking about a good explanation yourself. 
 
4.2.2 A rectangular matrix cannot have both a left- and a right-inverse 
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A rectangular matrix cannot have a two-sided inverse because either that matrix or its transpose have a 
nonzero kernel. The rank of an 𝑚 × 𝑛 matrix is at most the minimum between 𝑚 and 𝑛. When 𝑚 > 𝑛 
(you have more rows than columns), the rank cannot be greater than 𝑛. This means that the rows are 
necessarily linearly dependent, which means that ker൫𝑨𝑻൯ is non-zero. Therefore a right-inverse does 
not exist. 
 
Now, thinking about a right-inverse might seem strange: we are used to thinking about the left-inverse 
as the matrix that “undoes” the transformation of 𝐴, and we know that it doesn’t exist if 𝐴 has a non-
zero kernel. This can help you understand why ker(𝐴்) ≠ {0} implies that the right-inverse doesn’t 
exist. If it did exist, then: 

𝐴𝐴௥௜௚௛௧
ିଵ = 𝐼௠×௠ 

But then, taking the transpose of both sides: 

൫𝐴௥௜௚௛௧
ିଵ ൯

்
𝐴் = 𝐼௠×௠ 

However, since 𝐴் has a non-zero kernel, it cannot have a left inverse, and therefore 𝐴௥௜௚௛௧
ିଵ  cannot 

exist. 
 
5. Pseudo-inverse (and SVD) 
We are almost ready to talk the pseudo-inverse. 
As we said, the null spaces are those that cause us 
problems when we try to invert a matrix. However, 
if we leave the null spaces aside and just talk about 
the row space and column space, we may notice a 
useful property: 

 
There is a one-to-one mapping4 from the row space 
to the column space. This is equivalent to saying: 

 For every vector 𝑤ഥ ∈ 𝑐𝑜𝑙𝑠(𝐴), there exists at most one vector 𝑣̅ ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴) such that 𝐴𝑣̅ = 𝑤ഥ . 
 If 𝑥̅, 𝑦ത ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴) and 𝑥̅ ≠ 𝑦ത then 𝐴𝑥̅ ≠ 𝐴𝑦ത. Can you prove it yourselves? 
 Different inputs in 𝑟𝑜𝑤𝑠𝑝(𝐴) give different outputs in 𝑐𝑜𝑙𝑠𝑝(𝐴). 

 
Proof: 
Let 𝑥̅ ≠ 𝑦ത (both in 𝑟𝑜𝑤𝑠𝑝(𝐴)), and assume that 𝐴𝑥̅ = 𝐴𝑦ത.  
Then 𝐴(𝑥̅ − 𝑦ത) = 0. But this means that (𝑥̅ − 𝑦ത) ∈ 𝑘𝑒𝑟(𝐴). 
Now, 𝑥̅ ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴) and also 𝑦ത ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴). Since the row space is a vector subspace, any linear 
combination of these is also in the row space, so: 
 

(𝑥̅ − 𝑦ത) ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴) 
 
But we know that ker(𝐴) and 𝑟𝑜𝑤𝑠𝑝(𝐴) are orthogonal subspaces, and therefore 𝑥̅ − 𝑦ത can only be the 
zero vector, meaning: 

𝑥̅ = 𝑦ത 
In contradiction to our assumption. This finishes the proof. 

                                                           
4 Do not confuse “one-to-one” with “onto”. A transformation 𝐴: ℝ௡ → ℝ௠ is called “onto”, if 𝐼𝑚(𝐴) = ℝ௠. 
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The pseudo-inverse 
We are now satisfied that there is a one to one mapping between the row space and the column space. 
If 𝑥̅ ∈ 𝑟𝑜𝑤𝑠𝑝(𝐴), then 𝐴 maps it to 𝑐𝑜𝑙𝑠𝑝(𝐴). 
The matrix that brings back a vector from the column space to the row space is called the pseudo-
inverse of 𝐴 (and is usually denoted by 𝐴ା). 
 
We won’t talk about it in this course, but know that it can be found using an extremely important 
concept called the Singular Value Decomposition (SVD). 
 
 
Additional resources 
A summary paper about the four fundamental subspaces, by Gilbert Strang. 

OWNER
Highlight




