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Linear Algebra – Lesson 13 
PCA and SVD 

 
In this lesson, we will discuss two related techniques in linear algebra – Principal Component Analysis 
(PCA) and Singular Value Decomposition (SVD). 
 
 
1. Principal Component Analysis (PCA) 
Before we walk through the idea of PCA, let’s read through the first paragraph in its Wikipedia page. Try 
to see what is clear for you and what isn’t: 

 
2.1 Dimensionality reduction – a simple example 
One of the main applications of Principle Component Analysis (PCA) is dimensionality reduction. 
Dimensionality reduction can be thought of as a problem of coding and decoding.  
 
Throughout this section, you should think of vectors not as arrows, but as points in space (each point lies 
at the tip of the vector arrow). 
 
You are given multiple vectors (let’s say 𝑚 vectors) of 𝑛 dimensions (�̅�ଵ, �̅�ଶ, … �̅� ∈ ℝ), and your task 
is to represent them in a space of lower dimension 𝑝. For example, Figure 1a shows an example where 
𝑛 = 2 and 𝑝 = 1 (the points are two-dimensional, and you wish to represent each point using a single 
number). In this example, you can see that using the 𝑥 coordinate only (projecting onto the 𝑥 axis; 
Figure 1b) gives a pretty good representation. We lose all the information about the vertical axis, but it 
seems like a fairly good choice. In contrast, looking at Figure 1c, you can see the projecting the points 
onto the 𝑦 axis gives a bad result – we lose a lot of information.  
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Figure 1. 

Questions: In what sense is 1b better than 1c? 
Answer: The representation in 1b is better in the sense that it preserves more of the variability between 
different points. Points that were farther apart before remain far apart even after the transformation.  
 

This variability, or “spread”, is often quantified using the variance: ଵ

ିଵ
∑ ൫𝑥 − �̅�൯

ଶ
ୀଵ , where 𝑚 is the 

number of samples, 𝑥 is sample number 𝑖, and �̅� is the mean of all samples (which we will assume to be 
zero). Notice that in judging how good each new representation is, we assumed that both axes are 
equally important.  
 
Question: What did we actually do here? Where is this “lower dimension” we are talking about, if 
everything is still plotted in 2D? 
Answer: In fact, panels 1b and 1c already show the “reconstructed” or “decoded” points. We actually 
chose a new axis on which we represented the points as 1D data (“coding”) and then converted it back 
to the 2D space (“decoding”): 
 

 
 
2.2 Dimensionality reduction – a still simple example 
Now, look at the next example in Figure 2: 
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Figure 2. 

 
Here it seems that choosing between projection onto the 𝑥 axis or the 𝑦 axis doesn’t make much of a 
difference. Both of them preserve some of the variability, but lose a lot as well. A third option is shown 
in Figure 3. Now, instead of projecting the data onto one the standard axes, we project it onto a new 
direction, represented by the red arrow: 

 
Figure 3. 

 
A better way to think about this is this: we are moving to a new basis, which is still orthogonal, but in 
which the direction of the first basis vector captures the maximal possible variance in the data (red 
arrow), and the second basis vector captures the rest of the variance: 

 

 
 
These new directions are called the first principal component (PC1) and the second principal component 
(PC2)1. 
 
What is special about the new basis that we are looking for? 
In the standard basis, the different axes are correlated: if you know the 𝑥 coordinate of a data-point, you 
can have a good guess about its 𝑦 coordinate. In other words, the two axes (or “features”) share their 
variability.  
In the new basis we are looking for, the axes are uncorrelated. Knowing the PC1 coordinate of a point, 
doesn’t tell you anything about the PC2 coordinate of this point. 
 
 

                                                           
1 More precisely, these directions are called the principal directions, or principal axes. The principal components 
are the projections onto these new axes. The first principle component of point �̅�ଵ is its projection onto the unit 
vector in the direction of the first principal axis. 
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2.3 Interactive example 
Take a look at this interactive example: http://setosa.io/ev/principal-component-analysis/ 
Move the data points of the left panel and see how this affects the data in the new basis of principal 
components. Pay attention the two lower panels as well: what is special about the data points 
distribution in the PC space compared with the standard space? 
 
2.4 Calculating the covariance between two variables 
In the next section, we will talk about the covariance matrix. Before we do that, let’s make sure we 
know what covariance and correlation are, and how we can use linear algebra to calculate them. 
 
Intuitively, two variables that change together are correlated. If we measure people’s height and show 
size, we will find that they are correlated – when was is larger, so is the other. 
 
The term “covariance” is strongly related to “correlation”. The covariance between two random 
variables 𝑥, 𝑦 with expected values 𝜇௫ and 𝜇௬ is defined by: 

𝐶𝑜𝑣(𝑥, 𝑦) = 𝔼 ቀ(𝑥 − 𝜇௫)൫𝑦 − 𝜇௬൯ቁ 

Where 𝔼(𝑥) is the expectation of 𝑥. 
Why does this definition make sense?  

 If we have a positive covariance, this means that when 𝑥 tends to be greater than its mean, so 
does 𝑦. When  𝑥 is smaller than its mean, so is 𝑦. 

 Let’s assume that 𝜇௫ = 0 and also 𝜇௬ = 0. Then 𝐶𝑜𝑣(𝑥, 𝑦) will be high if 𝑥 and 𝑦 tend to change 
together, because they will tend to be positive together and negative together. Therefore, the 
product 𝑥𝑦 tends to be positive.  

 
Pearson’s correlation is simply the covariance of the z-scores. In other words, we can calculate 
Pearson’s correlation between two variable like that2: 

1. Remove the mean from each variable (so it has a mean of 0) 
2. Scale each variable so that its variance is equal to 1 
3. Calculate the covariance of the two new variables 

 
So, covariance and correlation are the same thing, up to scaling and zero-meaning the data. 
 
2.4.1 The dot product and the covariance 
It turns out that the dot product is very closely related to the covariance.  
Remember, we have a set of 𝑚 measurements in two dimensions (each dimension is a variable).  
Let’s arrange them in two vectors �̅� and 𝑦ത (assume that each vector has a mean of zero). Now, using our 
sample, instead of theoretical expectations, we will have sample means (or empirical means): 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑚
 𝑥𝑦



ୀଵ

 

                                                           
22 This actually tells you that Pearson’s correlation is not sensitive to scaling and shifting of the data. Another way 
to say it, is that Pearson’s correlation between two variables is their covariance, scaled by their individual 

variances: 𝜌௫௬ =
 (௫,௬)

ఙೣఙ
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But this is simply the dot product between the two vectors, divided by 𝑚: 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
�̅�்𝑦ത 

 
A note about Pearson’s correlation and the dot product 
Similarly, the dot product is closely related to Pearson’s correlation coefficient. 
We shift and scale each of the vectors �̅�, 𝑦ത to have zero mean and unit variance, and denote them by 
𝑥, 𝑦. The Pearson correlation between the variable 𝑥 and 𝑦 is given by3: 

1

𝑛
𝑥்𝑦 

 
2.5 The covariance matrix 
Now we are ready to define the covariance matrix.  
Our goal then is to represent the data points in a new basis (new “feature” axes) in which there is no 
correlation between different axes. How should we do this? 
The natural way to approach this problem is to come up with a relevant matrix, diagonalize it, and use 
the eigenvectors as the new basis vectors. 
 
2.5.1 The data matrix 
Let’s think about a set of 𝑚 measurements with 𝑛 features. We can represent it using a matrix 𝐴×. In 
general, 𝐴 would be a rectangular matrix. In the above example, it would be a very long matrix, 
describing the 𝑚 samples, each with two measured features (𝑚 samples in 2D): 

𝐴 =

⎝

⎜
⎜
⎜
⎛

𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ

𝑥ଷ 𝑦ଷ

… …
… …
… …

𝑥 𝑦⎠

⎟
⎟
⎟
⎞

 

 
The covariance matrix tells us about the correlation between the features.  

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  ൬
𝑉𝑎𝑟(𝑥) 𝐶𝑜𝑣(𝑥, 𝑦)

𝐶𝑜𝑣(𝑦, 𝑥) 𝑉𝑎𝑟(𝑦)
൰ 

We will assume that the mean of each feature is 0. We already know how to calculate each element in 
this matrix! If we define the columns of 𝐴 as vectors 𝑎തଵ and 𝑎തଶ, the variance of the first dimension is:  

1

𝑚
 𝑥

ଶ



ୀଵ

=
1

𝑚
(𝑥ଵ 𝑥ଶ … … 𝑥)

⎝

⎜
⎛

𝑥ଵ

𝑥ଶ

…
…

𝑥⎠

⎟
⎞

=
1

𝑚
𝑎തଵ

்𝑎തଵ 

And the covariance between the two dimensions is: 

                                                           
3 See short derivations for the relationship between the dot product and Pearson’s correlation coefficient here and 
here. Spoiler alert: You will find the Pearson’s correlation coefficient is just the cosine of the angle between the 
vectors. 
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1

𝑚
 𝑥ଵ𝑦



ୀଵ

=
1

𝑚
(𝑥ଵ 𝑥ଶ … … 𝑥)

⎝

⎜
⎛

𝑦ଵ

𝑦ଶ

…
…

𝑦⎠

⎟
⎞

=
1

𝑚
𝑎തଵ

்𝑎തଶ 

 
To calculate the covariance between the features, we can look at 𝐴்𝐴: 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴்𝐴 = ቀ ቁ ൮ ൲ = ቀ ቁ 

The diagonal elements tell us the variance in each dimension. The off-diagonal elements tell us about 
the covariance between the measurements4. 
 
2.5.2 The covariance matrix 
The matrix 𝐴்𝐴 is the sample covariance matrix (or empirical covariance matrix). It is: 

 Real and symmetric 
 It is diagonalizable, with orthogonal eigenvectors 
 Positive definite (its eigenvalues are real and non-negative) 

 
2.5.3 Diagonalizing the covariance matrix 
Since the covariance matrix is a real symmetric matrix, we should be able to find its eigenbasis. The 
eigenvectors will be orthogonal to each other. Now, each data point is represented in a new basis, with 
𝑛 new features which we call 𝑠ଵ, 𝑠ଶ, … , 𝑠. In this new basis, the covariance matrix is diagonal: 
 

൮

𝑉𝑎𝑟(𝑠ଵ) 0 … 0

0 𝑉𝑎𝑟(𝑠ଶ) … 0
… … … …
0 0 … 𝑉𝑎𝑟൫𝑠൯

൲ 

 
This means that there is no covariance between the dimensions – this is exactly what we wanted. 
 
2.6 Dimensionality reduction 
The eigenvalues 𝜆ଵ, … , 𝜆 are the variances of the features in the new basis. We typically order them 
from the largest to the smallest:  

𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆 
Now, to perform dimensionality reduction, we can eliminate the features of the smallest variance. 
  

                                                           
4 The covariance matrix is closely related to the correlation matrix. The correlation matrix is the covariance matrix, 
with each element scaled by the variance of the two relevant features. In the correlation matrix, all the diagonal 
elements are 1. 
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2.5 Singular Value Decomposition – SVD 
The next section is based on Gilbert Strang’s lecture on the SVD.  
PCA can be thought of as a result of a more general process called Singular Value Decomposition (SVD). 
 
Let 𝐴 be an 𝑛 × 𝑛 diagonalizable matrix. Then: 

𝐴 = 𝑃Λ𝑃ିଵ 
And we know that the columns of 𝑃 are the eigenvectors of 𝐴: 𝐴�̅� = 𝜆�̅�. 
 
If 𝐴 is also symmetric, we saw that it is diagonalizable by an orthogonal matrix 𝑄: 

𝐴 = 𝑄Λ𝑄் 
 
These are two example of what we call “factorization” – the matrix 𝐴 is broken into a factor of three 
matrices. But what if 𝐴 is not even square? It no longer makes sense to look for “the eigenbasis”, 
because 𝐴 maps vectors from one space to another space. Yet it turns out that even for 𝑚 × 𝑛 matrices, 
there exists a very useful factorization, the SVD: 
 

𝐴 = 𝑈Σ𝑉் 
The matrix 𝑈 is orthogonal, and its columns are called the left singular vectors. 
The matrix 𝑉 is orthogonal, and its columns are called the right left singular vectors. 
The matrix Σ is diagonal, and the values on the diagonal (𝜎ଵ > 𝜎ଶ > ⋯ > 𝜎 > 0) are called the singular 
values. 
 
Remember that for orthogonal matrices, 𝑉்𝑉 = 𝐼. So this is equivalent to: 

𝐴𝑉 = 𝑈Σ 
 
Our goal is to find these 𝑉, 𝑈 and Σ. 
To understand this factorization more, let’s write it explicitly: 

𝐴 ൭
| | |

�̅�ଵ … �̅�

| | |
൱ = ൭

| | |
𝑢തଵ … 𝑢ത

| | |
൱ ൭

𝜎ଵ 0 0
0 … 0
0 0 𝜎

൱ 

In other words: 
𝐴�̅�ଵ = 𝜎ଵ𝑢തଵ 
𝐴�̅�ଶ = 𝜎ଶ𝑢തଶ 

… 
𝐴�̅� = 𝜎𝑢ത 

In the 𝑛 × 𝑛 case, in the 𝑚 × 𝑛 case, we can’t even hope to get the same results, because we’re moving 
from ℝ to ℝ. However, what we see here is that we can find a set of orthogonal vectors 
�̅�ଵ, �̅�ଶ, … , �̅� ∈ ℝ that is mapped to a scaled version of a set of orthogonal vectors 𝑢തଵ, 𝑢തଶ, … , 𝑢ത ∈ ℝ.  
 
Finding 𝑉 and Σ 
To find the matrices 𝑉 and Σ, we’ll do a trick. Instead of looking at 𝐴, we will look at 𝐴்𝐴: 

𝐴 = 𝑈ΣV 
Then: 

𝐴்𝐴 = 𝑉Σ𝑈்𝑈ΣV 
But since 𝑈்𝑈 = 𝐼, we get: 
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𝐴்𝐴 = 𝑉ΣଶV 
But wait! This tells us that the matrix 𝐴்𝐴 is diagonalized by the orthogonal matrix 𝑉, and its 
eigenvalues are 𝜎ଵ

ଶ, 𝜎ଶ
ଶ, … , 𝜎

ଶ5. 
In other words, the columns of 𝑉 are the eigenvectors of 𝐴்𝐴 and the 𝜎ଶ′𝑠 are the eigenvalues of 𝐴்𝐴. 
This is the tight relation between PCA and SVD. If you calculated the PCA, you actually found the 
relevant matrices of the SVD, and vice versa. 
By convention, the 𝜎′𝑠 are ordered by importance: 𝜎ଵ > 𝜎ଶ > ⋯ > 𝜎 > 0 
 
Similarly, you can show that 𝐴𝐴் = 𝑈Λ𝑈் 
 
What does it all mean? 
SVD has many applications, especially in data science. We can 
also interpret it geometrically. It tells us that every linear 
transformation 𝐴× can be broken into a series of rotation 
(with possible reflections), a scaling, and another rotation (with 
possible reflections). This is illustrated in the following figure 
from Wikipedia, for the matrix 𝑀, which is broken into 𝑈Σ𝑉∗ 
(here they used 𝑉∗ to denote the complex conjugate): 

 
 
A note about choosing the 𝑢ത′𝑠 
You may be tempted to think that we can just diagonalize 𝐴்𝐴 to find 𝑈. But in fact, a small problem 
might occur if we have some eigenvalue with a multiplicity greater than 1. In this case, the eigenspace 
has dimension greater than 1, and we have freedom in choosing exactly where the eigenvectors will 
point to. We want to make sure that the orthogonal �̅�ᇱ𝑠 are mapped to orthogonal 𝑢തᇱ𝑠. To do that, we 
can define: 

𝑢തଵ =
𝐴�̅�ଵ

𝜎ଵ
 

𝑢തଶ =
𝐴�̅�ଶ

𝜎ଶ
 

And so on. 
We can easily show that they are orthogonal, and that they are also eigenvectors of 𝐴𝐴். 
Question: Show that 𝑢തଵ and 𝑢തଶ are orthogonal. 
 
  

                                                           
5 You may have noticed that 𝐴்𝐴 is of size 𝑛 × 𝑛, but we only looked at 𝑟 singular values. The reason is that 
indeed, the number of singular values may be smaller than 𝑛 and 𝑚. In this case, the rest of the singular values are 
set to 0. Please refer to the original lecture for a more detailed explanation on how to account for the dimensions 
here. 
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Additional resources 
A great series of videos on SVD by Steve Brunton 
Short SVD overview in Gilbert Strang’s Vision of Linear Algebra videos 
Short PDF summary of SVD from Gilbert Strang’s 18.06SC course 
An easy to read PCA tutorial 
Yet another well documented tutorial on PCA 
PCA vs Ordinary Least Squares 
PCA and SVD 
PCA vs ICA 
PCA and Lagrange multipliers 
A step-by-step presentation of PCA 


