Some additional questions - solution

- 1. If I is the matrix representation in the "standard" basis, the matrix representation in another basis is $S^{-1}IS$, where S is the matrix corresponding to the new basis. Now, $S^{-1}IS = S^{-1}S = I$. Thus I is invariant under change of basis transformation.
- 2. Let's guess that $(I A)^{-1} = I + A + A^2 + \dots + A^{m-1}$ and show that it satisfies the definition of the inverse matrix : $(I - A)(I + A + A^2 + \dots + A^{m-1}) = I + A + A^2 + \dots + A^{m-1} - A(I + A + A^2 + \dots + A^{m-1}) = I + A + A^2 + \dots + A^{m-1} - A - A^2 - \dots - A^{m-1} - A^m = I - A^m = I$. The last equality is because A is nilpotent with nilpotency index m. we got that $(I - A)(I + A + A^2 + \dots + A^{m-1}) = I$. Thus, $(I - A)^{-1} = I + A + A^2 + \dots + A^{m-1}$.
- 3. If \bar{u} and \bar{v} are distinct solutions, then $A\bar{u}=b$ and $A\bar{v}=b$, so $A\bar{u}=A\bar{v}$ and therefore $A(\bar{u}-\bar{v})=0$ with $\bar{w}=\bar{u}-\bar{v}\neq 0$. Now we can take any scalar k and show that $\bar{u}+k\bar{w}$ is a solution of our linear system. Indeed $A(\bar{u}+k\bar{w})=A\bar{u}+kA\bar{w}=b+0=b$ and no two column vectors $\bar{u}+k_1\bar{w}$ and $\bar{u}+k_2\bar{w}$, with $k_1 \neq k_2$ are equal. (Indeed, from $\bar{u}+k_1\bar{w}=\bar{u}+k_2\bar{w}$ we can derive $(k_1-k_2)\bar{w}=0$; as $\bar{w}\neq 0$, we get $k_1-k_2=0 \rightarrow k_1=k_2$). Since we have infinitely many scalars available, the system has infinitely many solutions.