Supplementary Math Course -Linear Algebra (76967)

Final Exam (semester A – MOED A) 20.2.2023- solution

Part A

Answer all 3 questions.

Next to each question is an estimate of the number of points it is worth.

1. Let $a_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $a_2 = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ a \\ 2 \end{bmatrix}$. **a.** We want to be able to express the vector **b** as a linear combination of the vectors a_1 and a_2 . Write this as a system of equations, in a matrix form $(A\bar{x} = \bar{b})$. [7 pt] To be able to express the vector **b** as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 , there must be scalars c_1, c_2 such that $c_1\mathbf{a} + c_2\mathbf{a}_2 = \mathbf{b}$. This is equivalent to the matrix equation $A \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \mathbf{b}$, where $A = [\mathbf{a}_1, \mathbf{a}_2] = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 4 \end{bmatrix}$. Thus, the vector **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 if and only if the system $A\mathbf{x} = \mathbf{b}$ is consistent.

b. Determine all the values of *a* such that the corresponding system is consistent. [10 pts]

So let us consider the augmented matrix of the system and reduce it by elementary row operations.

We have

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 2 \mid 0 \\ 2 & -1 & a \\ 3 & 4 \mid 2 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 \mid 0 \\ 0 & -5 \mid a \\ 0 & -2 \mid 2 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{2}R_3} \begin{bmatrix} 1 & 2 \mid 0 \\ 0 & -5 \mid a \\ 0 & 1 \mid -1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 \mid 0 \\ 0 & 1 \mid -1 \\ 0 & -5 \mid a \end{bmatrix}$$
$$\xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \mid 2 \\ 0 & 1 \mid -1 \\ 0 & 0 \mid a -5 \end{bmatrix}.$$

If a - 5 = 0, then we obtain the solution $x_1 = 2$, $x_2 = -1$. Thus the system is consistent when a = 5. On the other hand, if $a - 5 \neq 0$, then we divide the third row by a - 5 and then the third row becomes $\begin{bmatrix} 0 & 0 & | & 1 \end{bmatrix}$, which implies that the system is inconsistent (as we have 0 = 1.)

Therefore, the only possible value for a is a = 5.

c. For which value(s) of a the vector b is a linear combination of the vectors a_1 and a_2 ? [4 pt]

The vector b is a linear combination of a_1 and a_2 if and only if the system Ax=b is consistent, which is for a=5.

d. Solve the system of equations for this value a and write b as a linear combination of the vectors a_1 and a_2 . [4 pt] The solution of the system is $x_1 = 2, x_2 = -1$, and therefore, $2a_1 - a_2 = b$.

(25 pts)

2. Let
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
.

a. Find the characteristic polynomial of A. [7 pts]

By definition, the characteristic polynomial of *A* is $p(t) = \det(A - tI)$. We have

 $p(t) = \det(A - tI)$ $= \begin{vmatrix} -t & 0 & 0 & 0 \\ 1 & 1 - t & 1 & 1 \\ 0 & 0 & -t & 0 \\ 1 & 1 & 1 & 1 - t \end{vmatrix}$ $= -t \begin{vmatrix} 1 - t & 1 & 1 \\ 0 & -t & 0 \\ 1 & 1 & 1 - t \end{vmatrix}$ by the first row cofactor expansion $= -t \left(-t \begin{vmatrix} 1 - t & 1 \\ 1 & 1 - t \end{vmatrix} \right)$ by the second row cofactor expansion $= t^{2} \left((1 - t)^{2} - 1 \right)$ $= t^{2}(t^{2} - 2t)$ $= t^{3}(t - 2).$

b. What are the eigenvalues of A? What is the algebraic multiplicity of each eigenvalue? [4 pts]

Eigenvalues and their algebraic multiplicities are determined by the characteristic polynomial of A.

From this, the eigenvalues of A are 0 and 2 with algebraic multiplicities 3 and 1, respectively.

Find a basis for the eigenspace of the eigenvalue with the highest algebraic multiplicity. [10 pts]

The eigenvalue with the highest algebraic multiplicity is $\lambda=0$, and its eigenspace is E0. By definition $E_0 = \mathcal{N}(A - 0I) = \mathcal{N}(A)$.

Thus, the eigenspace ${\cal E}_0$ is the null space of the matrix A.

We solve the equation $A\mathbf{x} = \mathbf{0}$ as follows.

The augmented matrix of this equation is

	0	0	0	0	0		0	0	0	0	0		1	1	1	1	0	
$[A \mid 0] =$	1	1	1	1	0	$\xrightarrow{R_4-R_2}$	1	1	1	1	0	$\xrightarrow{R_1\leftrightarrow R_2}$	0	0	0	0	0	
	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0	ŀ
	1	1	1	1	0		0	0	0	0	0		0	0	0	0	0	

Hence the solution satisfies

$$x_1 = -x_2 - x_3 - x_4$$

and the general solution is

$$\mathbf{x} = \begin{bmatrix} -x_2 - x_3 - x_4 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Therefore, the eigenspace is

$$E_{0} = \mathcal{N}(A)$$

$$= \left\{ \mathbf{x} \in \mathbb{C}^{4} \mid \mathbf{x} = x_{2} \begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix} + x_{3} \begin{bmatrix} -1\\0\\1\\0\\1 \end{bmatrix} + x_{4} \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix}, \text{ for any } x_{2}, x_{3}, x_{4} \in \mathbb{C} \right\}$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} -1\\1\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1\\0\\1 \end{bmatrix} \right\}.$$

Thus the set

ſ	-1		-1		-1	
	1		0		0	
Ì	0	'	1	'	0	
l	0		0		1	J

is a spanning set of E_0 , and it is straightforward to check that the set is linearly independent.

d. What is the geometric multiplicity of the eigenvalue with the highest algebraic multiplicity? [4 pts]

This set is a basis of EO, and the dimension of EO is 3. The geometric multiplicity of λ =0 is the dimension of EO by definition. Thus, the geometric multiplicity of λ is 3.

(25 pts)

- **3.** Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}$ and $T\left(\begin{bmatrix}4\\3\end{bmatrix}\right) = \begin{bmatrix}0\\-5\\1\end{bmatrix}$
 - a. Find the matrix representation of T in the basis $\{\bar{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \bar{v}_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}\}$. [3 pts]

The columns of the matrix are the images of the corresponding basis vectors:

$$A_B = \begin{bmatrix} 1 & 0 \\ 2 & -5 \\ 3 & 1 \end{bmatrix}$$

b. Find the matrix representation of *T* in the standard basis. [10 pts]

The matrix representation A of the linear transformation is given by

$$A = [T(\mathbf{e}_1), T(\mathbf{e}_2)],$$

where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

are the standard basis vectors for \mathbb{R}^2 .

To determine $T(\mathbf{e}_1)$, we first express \mathbf{e}_1 as a linear combination of $\begin{bmatrix} 3\\2 \end{bmatrix}$ and $\begin{bmatrix} 4\\3 \end{bmatrix}$ as follows. Let

$$\mathbf{e}_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix} = a \begin{bmatrix} 3\\ 2 \end{bmatrix} + b \begin{bmatrix} 4\\ 3 \end{bmatrix}.$$

This can be written as

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The determinant of the coefficient matrix $\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ is $3 \cdot 3 - 4 \cdot 2 = 1 \neq 0$ and thus it is invertible. Hence we have

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

Hence a = 3 and b = -2.

It yields that

$$\mathbf{e}_1 = 3 \begin{bmatrix} 3 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

It follows that

$$T(\mathbf{e}_{1}) = T\left(3\begin{bmatrix}3\\2\end{bmatrix} - 2\begin{bmatrix}4\\3\end{bmatrix}\right)$$
$$= 3T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) - 2T\left(\begin{bmatrix}4\\3\end{bmatrix}\right) \qquad \text{by linearity of } T$$
$$= 3\begin{bmatrix}1\\2\\3\end{bmatrix} - 2\begin{bmatrix}0\\-5\\1\end{bmatrix} = \begin{bmatrix}3\\16\\7\end{bmatrix}.$$

Similarly, we compute $T(\mathbf{e}_2)$ as follows. Let

$$\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix} = c \begin{bmatrix} 3\\2 \end{bmatrix} + d \begin{bmatrix} 4\\3 \end{bmatrix}.$$

This can be written as

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Hence, we obtain

$$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix},$$

and c = -4, d = 3.

Hence

$$\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix} = -4 \begin{bmatrix} 3\\2 \end{bmatrix} + 3 \begin{bmatrix} 4\\3 \end{bmatrix}$$

and we have

$$T(\mathbf{e}_2) = T\left(-4\begin{bmatrix}3\\2\end{bmatrix}+3\begin{bmatrix}4\\3\end{bmatrix}\right)$$
$$= -4T\left(\begin{bmatrix}3\\2\end{bmatrix}\right)+3T\left(\begin{bmatrix}4\\3\end{bmatrix}\right) \qquad \text{by linearity of } T$$
$$= -4\begin{bmatrix}1\\2\\3\end{bmatrix}+3\begin{bmatrix}0\\-5\\1\end{bmatrix}=\begin{bmatrix}-4\\-23\\-9\end{bmatrix}.$$

Therefore the matrix representation A of T is

	3	-4]	
$A = [T(\mathbf{e}_1), T(\mathbf{e}_2)] =$	16	-23	
	7	-9	

c. What is rank(T)? Explain. [7 pts]

Let us first determine the rank of *A*. We have

$$A = \begin{bmatrix} 3 & -4 \\ 16 & -23 \\ 7 & -9 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 3 & -4 \\ 16 & -23 \\ 1 & -1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 \\ 16 & -23 \\ 3 & -4 \end{bmatrix}$$
$$\xrightarrow{R_2 - 16R_1} \begin{bmatrix} 1 & -1 \\ 0 & -7 \\ 0 & -1 \end{bmatrix} \xrightarrow{-R_3} \begin{bmatrix} 1 & -1 \\ 0 & -7 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Hence, the reduced row echelon form matrix of A has two nonzero rows. So the rank of A is 2.

d. What is ker(T)? Explain. [5 pts]

By the rank-nullity theorem, for a linear transformation $T: V \to U$, we have: $rank(T) + \underbrace{nullity(T)}_{\dim(ker(T))} = \dim(V)$ In this case $T: \mathbb{R}^2 \to \mathbb{R}^3$, so: $2 + \dim(\ker(A)) = 2 \to \dim(\ker(A)) = 0$

This means that the only vector in the null-space of *T* is the 0 vector: $ker(T) = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$.

(25 pts)

Part B

For each of the following statements, determine if it is true or false. Explain / prove shortly / give a counter example when needed. (answers without a proper explanation will not get any points)

1. Let A and B be n×n matrices. If these matrices have a common eigenvector,

then det(AB-BA)=0.

True. Let α and β be eigenvalues of A and B such that the vector x is a corresponding eigenvector. Namely we have Ax= α x and Bx= β x. Then we have:

 $(AB-BA)x=ABx-BAx=A(\beta x)-B(\alpha x)=\beta Ax-\alpha Bx=\beta \alpha -\alpha \beta =0.$

By the definition of eigenvector, x is a non-zero vector, which means that ker(AB–BA) is not 0. Thus, the matrix AB–BA is singular (non-invertible). Equivalently the determinant of AB–BA is zero.

True.

It is straightforward to check that the vectors \mathbf{v}_1 , \mathbf{v}_2 are linearly independent, and hence the set *S* is a basis of Span(*S*).

Since the dot (inner) product of \boldsymbol{v}_1 and \boldsymbol{v}_2 is

 $\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 \neq 0,$

S is not an orthogonal basis. We apply the Gram-Schmidt process to generate an orthogonal basis from the basis *S*.

The Gram-Schmidt process for two vectors is as follows. We define vectors $\mathbf{u}_1, \mathbf{u}_2$ by the following formula. Then $B = {\mathbf{u}_1, \mathbf{u}_2}$ is an orthogonal basis of Span(*S*).

$$\mathbf{u}_1 := \mathbf{v}_1$$

$$\mathbf{u}_2 := \mathbf{v}_2 - \frac{\mathbf{u}_1 \cdot \mathbf{v}_2}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1.$$
 (*)

Since we have

 $\mathbf{u}_1 \cdot \mathbf{v}_2 = \mathbf{v}_1 \cdot \mathbf{v}_2 = 1$ and $\mathbf{u}_1 \cdot \mathbf{u}_1 = \mathbf{v}_1 \cdot \mathbf{v}_1 = 2$,

we compute

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \frac{1}{2}\mathbf{u}_{1}$$
$$= \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$$
$$= \begin{bmatrix} -1/2\\1\\1/2\\0 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} -1\\2\\1\\0 \end{bmatrix}.$$

Therefore the set

ſ	$\begin{bmatrix} 1 \end{bmatrix}$		-1/2)
J	0		1	
Ì	1	,	1/2	Ì
l	0		0	J

is an orthogonal basis of Span(S).

Note that scaling by a nonzero scalar does not change the orthogonality, the set

ſ	[1]		[-1]	
J	0		2	
Ì	1	,	1	Ì
l	0		0	J

is also an orthogonal basis of Span(*S*), just in case you prefer not to have a fraction.

3. If A and B are n×n symmetric matrices, then the sum A+B is also symmetric.

True. Since *A* and *B* are symmetric, we have $A^{T} = A$ and $B^{T} = B$. It follows that

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}} = A + B.$$

Thus the sum A + B is symmetric.

4. If v_1, v_2, v_3 are linearly dependent, then v_1, v_2, v_3, v_4 are linearly dependent.

True. Since the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent, there exists scalars c_1 , c_2 , c_3 , not all of them are zero, such that

 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$

Let \mathbf{v}_4 be any *n*-dimensional vector.

Then we have the linear combination

 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + 0\mathbf{v}_4 = \mathbf{0}$

whose coefficient is not trivial as at least one of c_1 , c_2 , c_3 is nonzero. This implies that the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 is also linearly dependent.

If the coefficient matrix of a system of linear equations is singular, then the system is inconsistent.

False. The system could be consistent even though the coefficient matrix is singular. For example, consider the system

$$x_1 + 2x_2 = 3 2x_1 + 4x_2 = 6.$$

The coefficient matrix of the system is $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. This is singular since, for example, it is row equivalent to $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$. However, the system has a solution, for example, $x_1 = 1, x_2 = 1$.

Hence the system is consistent even though its coefficient matrix is singular.

(5 pts each)

Good luck to all of you!