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Scientific background
Definition of clinical need: Breast cancer treatment is effective in most but not all women. Current
methods for monitoring treatment (physical examination and imaging ) fail in some women leading

to unnecessary exposure to toxic treatment and delaying effective treatment. Breast cancer (BC) is
a leading cause of death in women living in the western world. Identification of BC as a localized
disease allows treatment options that often lead to a cure, making early detection crucially
important. In BC, the current standard of care, neoadjuvant systemic therapy (NAST), achieves a
pathological complete response (pCR) of 40-70% [1,2]. Patients achieving a pCR have an
increased 5-year overall survival (OS) of 10-12% compared to those with residual disease [3,4].
However, our ability to predict who will achieve pCR is limited, and biomarkers are needed to
identify which cases will achieve pCR and can be spared additional treatment, and which cases fail
on upfront NAST and will require a different treatment option. Our own work and that of others has
shown that detection of breast cancer cell-free DNA (cfDNA) directly during NAST can predict
response, and thus merits additional study [5,6].

cfDNA released to the blood from cancer cells, holds important information on the nature of the

tumor. Informative features include cancer specific mutations and copy number alterations, as well
as information on the cancer cell-of-origin, which include cell-type specific DNA modifications such
as 5mC. In addition, the patterns of cfDNA fragmentation, including length and fragment ends were
shown to reflect cell-of-origin [7]. Thus, cfDNA emerges as a promising resource for detection and
classification of cancer, for monitoring disease progression/regression and providing
predictive/prognostic insights [8,9]. One of the most promising cfDNA biomarker studies for multi
cancer early detection was based on targeted methylation assay of over 100,000 genomic regions
in 11,000 samples, to develop a classifier which has been validated in a large clinical study and is
now in widespread use for cancer detection [10]. Unlike other cfDNA biomarkers which rely on
genetic alterations, 5mC can also detect collateral damage to non-cancer cells surrounding the
tumor.[11]. Most of the methylation-based approaches have used bisulfite-based approaches, but
immunoprecipitation-based [12] and enzymatic [13] techniques have also shown promising results.
For early detection, there has been some success using low-coverage whole genome sequencing
to detect copy number alterations and cancer-specific fragmentation features [14,15]. After
identification and biopsy and sequencing of a tumor, personal mutations can be used
bioinformatically (i.e. “tumor-informed” approaches) in combination with either deep capture
sequencing [16] or whole-genome sequencing [17,18] for ultra-sensitive detection of residual
disease.

We recently applied Nanopore sequencing to cfDNA (cfNano). Nanopore sequencing is unique
since it can distinguish 5mC from C in native DNA sequencing, making the methylation pattern an
integral part of the sequence with no need for special sample processing or PCR amplification [19].
Compared to bisulfite-sequencing which tends to fragment DNA and introduce PCR bias [13,20],
our implementation of cfNano was able to preserve cancer-specific CNA, fragmentomic, and DNA

methylation information to classify cancer vs. non-cancer samples [19] We propose to integrate all
three layers of information into one tool to maximize the accuracy of our Nanopore-based

classification, and apply it to predict and to monitor response to NAST in BC.
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Research objectives and expected significance

The long-term goal is to develop Nanopore-based multimodal analysis of cfDNA as an accessible

tool used in clinical oncology, which can be applied to tumor detection, classification, and response

prediction. We have chosen to focus our initial study on a clinical oncology problem that is feasible
and where our technology will allow us to study several resistance mechanisms which are thought
to involve changes in DNA methylation and CNA. The future potential of the Nanopore WGS
approach is that it provides simple sample processing and sequencing which could allow rapid
point-of-care analysis. However, we will also include best-in-class capture methylation sequencing,
both to validate the relatively new cfNano approach, and to determine which of the two approaches
is more informative for future development. Major goals: (i)Develop advanced within-read
methylation and copy number-aware computational approaches for identification and
deconvolution of circulating tumor DNA; (ii)Develop a targeted DNA methylation hybrid capture
panel for detection and profiling of breast cancer cell-free DNA in plasma; (iii)\Compare

Nanopore-based whole-genome analysis to the targeted capture panel. Integrate CNA,

fragmentomics, and methylation using an Al system for BC subtype classification, NAST response,

and toxicity.

Significance:

Development of a new multi-modal technology for liquid biopsy. Adoption of Nanopore
sequencing is increasing rapidly for clinical applications due to its advantages, which include the
low buy-in cost and portable nature of the device. Nanopore sequencing is also rapid, with
recent clinical demonstrations of end to end turnaround time from sample collection to tumor
classification in as little as 1-3 hours [21,22]. DNA methylation can differentiate any cell types
without relying on genetic changes, this technology development will likely have an impact
outside of oncology, especially in emergency medicine where rapid diagnosis can be critical.

2. Development of innovative computational methods that can be applied not only to cfNano but to
cfDNA bisulfite or enzymatic methylation sequencing (Aims 1,2). We incorporate several novel
and important aspects. First, we will “purify” site-specific methylation levels using cell type
composition inferred from global deconvolution, along with cancer cell copy number inferred
from copy number segment analysis. This will provide us not only more accurate estimates of
methylation at cell-of-origin marker sites, but will allow us to monitor other biologically relevant
changes during cancer progression.

3. Unmet need: When treating local BC treatment plan is set based on tumour profiling and
imaging. Absence of effective tools for monitoring response leads to overtreatment and
undertreatment. Both platforms we explore can provide rich data for Al but at the same time will
provide a dynamic biological picture of the tumor, allowing the physician to adjust the treatment
earlier and more effectively. Two common scenarios illustrate this point: i) HER2+ patients
treated with anti-HER2: Loss of ERBB2 amplification can reflect tumor eradication in response
to drug or may be a resistance mechanism allowing cells to thrive. The cfDNA picture should
clarify this and guide clinical action. For instance, if cfDNA shows complete clearance, the
patient would require no additional therapy; if cfDNA shows some residual ctDNA with ERBB2
amplification present (incomplete response), escalate to TDX [23]; if cfDNA shows residual
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ctDNA without ERBB2 amplification, switch treatment and/or operate; if cfDNA indicates stress
on other organs (toxicity), hold treatment; ii) The second common scenario is resistance to
taxene-based NAST in TNBC, was recently found to involve an unusual pattern of global DNA
hypomethylation, which created a vulnerability to epigenetic (EZH2i) therapy [24]. This change
in methylation should be detectable early by cfDNA profiling and prompt a consideration of
EZH2i. These are two specific scenarios we will pursue, but the approach is general and can be
adapted to other tumours and different clinical scenarios.

Investigational team: We are an interdisciplinary team, with joint publications and required
expertise for the different aspects of this project. Dr. Eden made fundamental discoveries
regarding the role of global hypomethylation and genomic instability in oncogenesis, and is
experienced withNanopore sequencing of genomic and cDNA, and co-developed our Nanopore
cfDNA sequencing approach with Prof. Berman and Dr. Zick [19]. Prof. Berman is a pioneer in
epigenetic whole-genome sequencing, producing the first deep human cancer methylome. He led
The Cancer Genome Atlas (TCGA) whole-genome bisulfite sequencing project and was an analyst
in the TCGA BC group. Dr. Zick is an M.D./Ph.D. Medical Oncologist with extensive applied
research in BC, genome instability, cfDNA, and methylation. Working with several cfDNA groups at
HUJI, Dr Zick initiated a large-scale operation for banking of plasma from cancer patients under
Helsinki approval, which have been used in a number of high-profile cfDNA analysis papers,
including a recent one on BC before and during NAST [5]. Prof. Kaplan is an expert in machine
learning, with a strong background in DNA methylation deconvolution and cfDNA methylation
analysis. His group produced the largest high quality WGBS atlas of diverse human cell types,
allowing accurate fragment-level plasma deconvolution [25]. Data management and availability.

Berman and Kaplan are experienced with sequencing consortia that involve extensive data
management and availability. Prof. Berman was a Pl in the NCI Genomic Data Analysis Network, a
large network of groups sharing human cancer data and making it available for other researchers.
A detailed explanation of our procedures is provided in the “Data management declaration”
Preliminary results.

We recently published our feasibility study of cfNano [19]. We showed that with 0.2x Nanopore
sequencing coverage, we could detect copy nhumber alterations and estimate tumor fraction using
ichorCNA, and estimate tumor fraction even more sensitively using DNA methylation-based
deconvolution. In the DNA methylation profiles, we detected both normal cell of origin marks such
as lineage-specific transcription factor binding sites, as well as cancer-specific alterations such as
global loss of methylation at “Partially Methylated Domains” (PMDs). We also showed that we
could detect cancer-specific fragmentomic signals such as short mononucleosome fragments
(100-150bp), and fragment end motifs such as CCCA [26,27].

The samples analyzed in [19] already include several plasma samples from the Hadassah Medical
Organization (HMO) sequenced by Dr. Eden’s group. By deconvolution, using available
methylation data, we detect changes in cell-type composition in patient plasma compared to
healthy plasma. In patient plasma we also detect global methylation loss in published PMDs from
WGBS in the TCGA project [28] (Fig. 1A-B). Using ichorCNA, we estimate tumor fraction and
generate CNA which reproduces characteristic CRC CNA anueploidy profiles described in TCGA
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[29] as well as focal ERBB2 amplification (Fig.1C). Whereas methylation-based deconvolution
identified a small component of epithelial DNA in case HU004.01, ichorCNA could not detect any

cancer DNA.
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Figure 1: Estimating cell type fractions, hypomethylation and CNA a from cfNano:(A) Non-Negative
Least Squares regression based on [19] was used to deconvolute cell types in healthy plasma cfDNA
samples. (B) Average DNA methylation across chr16p, comparing cancer with Normal.Top: TCGA WGBS;
Bottom:HUJI cfNano. PMDs from [28]. (C) ichorCNA, estimates tumor fraction and generates CNA profile
that reproduces characteristic CRC CNA anueploidy profiles described in TCGA (Top) [29], as well as focal
ERBB2 amplification.

Nanopore sequencing is a young and rapidly developing technology, with constant improvement in
library preparation, sequencing chemistry, instrumentation, sequencing speed and analysis tools.
Nanopore was originally optimized for longer reads. We have worked with Oxford Nanopore (ONT)
experts to optimise protocols and software to better capture short reads and improve capture of
methylation in short reads (see Letter of Collaboration from Spike Willcocks). We tested on cfDNA

instrument configuration files from Oxford Nanopore Technology (ONT) which allow capture of
short fragments from 20bp and up. ONT announced a new generation of flowcells (R10.4.1) and
chemistry “Kit 14” (expected to be released in 22 Q3 ), with improved 99%+ basecalling accuracy
and methylation data comparable to Bisulfite-seq. We are approved for early access to this new
line and will begin testing for cfDNA. Our current protocol is relatively simple, and we do not expect
problems sequencing new samples with this protocol. We are sequencing samples of healthy
plasma mixed with serially diluted patient plasma (40% tumor fraction) to reach (0.5,1,2,4,8,16%).
This dataset will serve to set the baseline sensitivity for tumor DNA detection (Nano or panel), and
to monitor sensitivity during development of analysis pipeline. We expect that as more features are
integrated into the analysis, sensitivity will improve. It will help us decide what coverage to aim for.
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Work Plan

Aim 1: Improve cfNano computational tools. There are several major areas where we will
improve the computational methods described above. The first subaim is the deconvolution of
cancer DNA from mixed plasma DNA, in order to determine both the relative fraction of cancer to

non-cancer cell-free DNA, as well as to purify the cancer DNA methylation levels across the

genome. The second major subaim is o integrate the copy number, fragmentomic, and
methylation signals into a single cancer detector.

Aim1a. Reference samples for deconvolution We and others have shown that cancer DNA in
plasma can be detected based on methylation patterns from the healthy cell of origin, using
reference-based deconvolution [13,30,31]. For our feasibility study [19], we used a reference atlas
based on methylation array data, which covers less than 3% of all CpGs in the genome and only
13% of highly cell type-specific methylation markers[25]. For breast detection, we have access to a
much richer dataset of deep whole-genome (WGBS) data for FACS-purified breast epithelial cell
types, blood, and other relevant cell types (Table 1). The new HUJI Atlas recently published by
Prof. Kaplan contains 207 purified methylomes of purified WGBS healthy samples, sequenced at
30x [25]. In addition, we have obtained 10 FACS-purified breast cancer luminal epithelial WGBS
datasets for an additional 10 donors from [32]. We also have plasma WGBS from 32 healthy
donors from [33] and 30 healthy donors from [13], and will collect additional datasets from new
studies. Additionally, we have downloaded 20x WGBS data of 30 primary breast tumors from
BASIS [34] and 6 primary breast tumors from TCGA [28], as well as Reduced Representation
Bisulfite Sequencing (RRBS) data for 1527 tumors and 244 healthy breast biopsies from
METABRIC [35]. Importantly, we have already obtained access to read-level data for all datasets,
which is critical for our methylation-based deconvolution method.

We will begin development of new computational methods below before our Nanopore sequencing
is completed. In order to facilitate this, we will use a deep (10x) methylation sequencing dataset of
cell-free DNA from 30 healthy controls, 32 pancreatic cancer cases, and 21 liver cancer cases [13].
We have obtained the raw read-level data, which allows us to analyze fragmentomic and copy
number features as well as methylation. In order to approximate our lower coverage Nanopore
sequencing, we will randomly downsample reads to create hundreds of virtual samples of ~0.2-1x
coverage, allowing us to gauge sensitivity of our methods to low coverage. Importantly, the HUJI
WGBS Atlas contains the corresponding cells-of-origin for this analysis.

Aim 1b. Within-read and copy humber-aware approaches to deconvolution: The methylation
ratio observed in plasma is a mixture of cancer cell DNA and DNA derived from other cells (mostly
white blood cells). Deconvolution of mixtures of cell types from methylation data has been studied
extensively in solid tissues [36] and to a degree in cfDNA [13,30,31,37]. Since most large
methylation studies have used a methylation array platform (Infinium) which assays individual
CpGs, the local coordination of multiple CpGs within individual reads has been largely neglected.
For sequencing data, the power of these “within-read” approaches for deconvolution has been
demonstrated with methods such as amrfinder [38], MethylPurify [39], and Methyl haplotypes [40],
yet Prof. Kaplan’s group was recently among the first to apply fragment-level analysis to cfDNA
deconvolution [25].



PIs: Eden, Zick, Berman, Kaplan Application no. 3099/22 Research plan p.6

The second important factor is that the ratio of cancer to non-cancer DNA varies across the
genome as a function of cancer copy number, yet this has not been taken into account in any
ctDNA detection deconvolution method. This will be especially important for BC, which is largely a
copy number (CN) driven cancer type [41]. Recently, the CAMDAC method was developed to
explicitly model CN to deconvolute cancer from non-cancer methylation levels within tumor tissues,
to provide a “purified” cancer cell methylation profile [42]. It was shown that these purified profiles
had more bimodal methylation states and performed significantly better at unsupervised clustering
of tumor samples from the same individual. Unfortunately, the CAMDAC method was not designed
to take into account within-read methylation information, and was not applied to cell-free DNA.

The CelFIE method [37] used an Expectation-Maximization (E-M) based probabilistic model to
deconvolute two or more cell types within mixed methylation sequencing data, using cell-type
specific regions identified from a WGBS reference, and performed significantly better than previous
approaches such as non-negative least squares [30]. However, the CelFIE model did not take
within-read information into account. Prof. Berman’s group has been working on an E-M model
based on MethylPurify [39], which does take within-read information into account but can only
model two cell types rather than multiple cell types as in CelFIE. They have also adapted the
original Celfie model to incorporate within-fragment information. Both models perform significantly
better than Celfie in simulation and in silico mixture experiments (data not shown). We are
currently working to compare these models to the UMX within-fragment approach recently
published by Prof. Kaplan [25], as well as another unpublished approach developed by his lab. We
will choose the most accurate of these deconvolution models, or employ a consensus approach if
they give complementary results.

Almost all current cancer cfDNA approaches assume copy number to be uniform across the
genome. As we showed in our preliminary study [19] there is a strong influence of copy number on
observed DNA methylation levels in the mixed plasma. We will address this by using only cell type

markers located within diploid regions of the genome for deconvolution (Figure 2A). We are

currently evaluating the added benefit of this copy-number aware model using simulation and in
silico mixture experiments, but we expect a significant benefit. For samples where ichorCNA is
able to call copy number, we will use sample-specific copy number calls. However, we expect
ichorCNA to fail on many samples with lower tumor fraction. In these samples, we will rely on the
large number of breast tumors analyzed for copy number status in the METABRIC consortium
[25,43,44], picking regions from chromosome arms with very low rates of copy number alteration in
breast cancer.

Aim 1c. Purification of cancer-specific methylation changes: We have introduced a number of
improvements above that will greatly improve the accuracy and sensitivity of cancer fraction
estimation. Once we have these estimates, we can use a relatively straightforward approach
introduced as “Copy number-aware Methylation Deconvolution Analysis of Cancers” or CAMDAC
[42], to “purify” the methylation patterns of the cancer cells. This will be important for capturing
methylation changes that occur after transformation, such as global hypomethylation (Figure 2B).
The CAMDAC method relies on both the global cancer fraction (tumor “purity”) and copy number
state. In the case of tumor tissue, these can be estimated from SNP information within CN



PIs: Eden, Zick, Berman, Kaplan Application no. 3099/22 Research plan p.7

alterations. For cfNano, we will use the highly accurate cancer fraction derived from
methylation-based deconvolution, and copy number state derived from ichorCNA. A representative
methylation profile is required for the non-cancer component of the mixture, which is
bioinformatically “subtracted” from the mixture. In our case, we will use methylation levels from
deep (x85) WGBS sequencing of healthy plasma [45].
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Figure 2: Copy number aware deconvolution and purification of circulating tumor DNA. (A) deconvolution using an
Expectation-Maximization method based on MethylPurify and CelFIE, with modifications. We use only diploid regions
based on copy number analysis to improve estimates. This results in a cell fraction (global purity). (B) Purity is used for
purification in a copy-number aware subtraction of non-cancer DNA based on the CAMDAC approach.

Importantly, CNA states from ichorCNA will be unknown for some samples, which will reduce the
accuracy of non-cancer purification. For this problem, we will implement a novel method to call
CNA domains based on E-M based deconvolution levels. Since each breast cell specific region
yields a cancer fraction in the deconvolution step, we should be able to call domains of increased
or decreased copy number using a standard CNA segmentation approach used for SNP based
CNA calling such as sliding window, hidden markov model, or changepoint analysis [46]. The input
to this segmentation will be both the methylation-based cancer fractions and the read coverage,
which we expect to increase sensitivity over read coverage alone (which is the only input to
ichorCNA). If not, we will revert to assuming diploid status for these samples.

Aim 1d. Integrate CNA, fragmentomic, and methylation features for cancer detection: In our
feasibility project, we showed that we could detect cancer-specific features of DNA methylation,
copy number alterations, and fragmentation from Nanopore data [19]. We have powered our study
similar to other circulating tumor DNA studies that use machine learning classifiers to detect
cancer vs. healthy control samples. [14,47] used a gradient tree boosting classifier to detect
multiple cancer types with 1-2x whole-genome sequencing (WGS), with only the fraction of short
mononucleosomes (<150bp) in non-overlapping 5Mbp genomic bins as input. Similarly, [15] used
stacked/ensemble machine learning (integrating five different classes of machine learning
algorithm) with inputs of the fraction of both short (<150bp) and long (300-500bp) reads, along with
4-mer fragment end motifs, to detect early stages colorectal adenocarcinomas and advanced
adenomas using 4x WGS. We showed that in our feasibility study that cancer-specific end motifs
(thought to derive from DNASE1L3 activity in tumors) were detectable in Nanopore cancer



PIs: Eden, Zick, Berman, Kaplan Application no. 3099/22 Research plan p.8

samples [19]. Siejka [13] used a Support Vector Machine (SVM) classifier with inputs of short and
long fragments, and cancer-specific hypomethylation based on 10x WGBS, to detect liver and
pancreatic cancers.

Guided by the sample size of these earlier studies, we will use the first 3/4 of our dataset (60
breast cancer cases and 25 healthy controls) to train models, holding out the second half as an
independent validation dataset. Within the training dataset, we use leave one out cross-validation
to evaluate performance and tune parameters. In addition to the feature inputs suggested by [15],
we will also include methylation features including global hypomethylation as in the
Siejka-Zielinska study above [13]. Importantly, we believe that methylation levels that are purified
based on tumor fraction and copy number status will increase the accuracy of our prediction. We
will begin using gradient boosting method, but will also test random forest, Support Vector
Machine, and deep learning classifiers.

Aim 1 alternative methods: Copy number analysis by ichorCNA is based on read counts alone
and has limited sensitivity. More accurate methods, such as CAMDAC/ASCOT and ABSOLUTE
[42], typically use heterozygous SNPs (B allele fraction). While we do not have power to call
individual SNPs with our 1x Nanopore WGS, we will include a backbone of common SNPs on our
capture panel (Aim 2). Since the samples will be matched, this will help us to identify complex copy
number issues including whole-genome doubling events [48], and monitor their effects on
deconvolution in our Nanopore data. As an example, we have one sample in our lung
adenocarcinoma feasibility Nanopore study [19] where an apparent mis-estimate of copy number
may be due to WGD, which occurs in approximately 70% of lung adenocarcinomas [42].

Aim 2: Development of Methylation hybrid capture panel

Nanopore-based plasma analysis will be compared to Illlumina sequencing following
bisulfite/enzymatic conversion and enrichment using a specialized methylation sequencing panel
from TWIST Bioscience. These custom-made capture panels by TWIST are widely used (e.g. by
GRAIL's GALLERI platform [10]), and allow deep sequencing (500-1000x) of 1,000-10,000 target
regions across the genome. We have already designed and analyzed similar TWIST panels.

Aim 2a. Selection of target regions: In Aim 2a we will design a targeted DNA methylation panel
for plasma deconvolution of breast cancer plasma before and following treatment. The panel will
include ~1000 differentially methylation regions that are uniquely unmethylated regions in specific

cell types and methylated elsewhere in the human body. For this, we will harness our human atlas

[25], which includes dozens of DNA methylation marker regions identified for each cell type
present in the plasma.We previously showed that cell-free DNA is mostly derived from blood and
immune cells, with a small fraction from hepatocytes and endothelial cells [25,30]. We will include
25-50 uniquely unmethylated genomic regions for each of these cell types (monocytes,
granulocytes, B, T, NL cells, macrophages, erythroblasts, megakaryocytes, hepatocytes, and
endothelial cells from various tissues). For monitoring collateral damage [11], we will also include
~100 markers for normal breast epithelium (basal and luminal epithelial cells), as well as brain,
lung and bone. Finally, we will use the reference BC methylome samples above (Aim 1a) to identify
regions differentially methylated in breast cancer in general, or in specific breast cancer subtypes
(triple negative, ER+, and HER2+). Because tumor reference data comes from bulk tumor data, we
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will be careful to exclude DMRs that result from the contamination of non-cancer cells. We mainly
target CpG-rich regions, where multiple CpGs are covered by each sequenced read, thus further
contributing to the specificity and sensitivity of fragment-level analysis [25].
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Figure 3. (A-C) Plasma cfDNA sequencing following hybrid capture at three breast cancer markers from [5].
Sequenced reads are shown in gray, with unmethylated CpGs in blue and methylated CpGs in red. Black
arrows mark CpGs inside targeted regions. Fragment-level analysis, shown as barplots, highlight the percent
of fragments unmethylated in all target CpGs (per molecule), across two plasma samples from breast cancer
patients (one advanced and one early, shown in blue), and two healthy controls (green). (D-F)
Fragment-level analysis from METABRIC RRBS data. Shown are (D) two genomic loci methylated in ER+
tumor samples (blue) but not in normal biopsy, TNBC or ER-/HER2+ samples (green), (E) two regions
differentially methylated in HER2+ tumors (blue), compared to normal biopsy, TNBC and ER+ tumors
(green), and (F) two regions differentially methylated in TNBC tumors, but not in healthy biopsy, or in
ER+/HER2+ tumors. Y-axis: percent of unmethylated fragments. (G-H) ichorCNA analysis of hybrid capture
panel off-target loci. A typical off-target rate of 20-30% provides shallow (0.2-0.4x) WGBS sequencing, which
could be used for copy number analysis. Shown are the same plasma samples from (A-C), including plasma
from an advanced breast cancer patient (G) and plasma from a healthy donor (H).

Our preliminary results (Figure 3A-C) show plasma DNA, captured using a similar TWIST panel

designed based on the human methylation atlas. Specifically, it demonstrates the use of hybrid
capture analysis at three breast cancer markers [5]. Indeed, fragment-level methylation analysis of
plasma DNA identifies cancer-like fragments for two BC patients, but not in healthy individuals. As
with the cfNano, initial tests with the panel will exploit plasma serial dilution set described in
preliminary results, to evaluate reproducibility of panel based tumor fraction.
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Aim 2b. Interpretation of panel data: tumor fraction and subtype analysis: Sequenced reads
will be analyzed using wgbstools and UXM, two software packages we have recently developed for
the analysis of DNA methylation atlas data [25]. Specifically, we will take a fragment-level
approach by calculating the fraction of “methylated”, “unmethylated”, or “inconsistent” fragments
from each genomic locus. These will be used for plasma deconvolution, highlighting the cellular
composition of plasma DNA. Specifically, the entire set of cancer markers will be used for inferring
the tumor load, whereas subtype-specific markers identify the tumor composition before and
following treatment [5,25,30]. With an expected depth of 500-1000x across ~1000 regions, multiple
tumor-derived fragments are expected to be sequenced in each locus, allowing direct unbiased
comparison with the methylation signals obtained from Nanopore sequencing from the same
plasma samples. Figures 3D-F shows three genomic regions that present differential methylation
levels at breast cancer subtypes. These regions were selected from the METABRIC RRBS data
[35] which covers ~1% of the human genome, suggesting that many more specific markers could
be identified by analysis of WGBS data. Importantly, our human methylation atlas suggests their
methylation pattern is unique to cancer, allowing their use as plasma cell-free DNA markers.

Aim 2c. Copy number analysis from panel off-targets (shallow WGBS): Finally, we were
curious to see if hybrid capture data could also be used for copy number analysis of cell-free DNA.
For this, we analyzed the read coverage of eight plasma samples analysed by TWIST panels.
Targeted regions were sequenced at an average depth of 650x, while the remaining genome (off
targets) was sequenced at 0.2-0.4x. As Figure 3G-H shows, this shallow WGBS of cfDNA can be
used for copy number analysis, revealing multiple CNAs in the plasma of the HER2+ breast cancer
patient (G) but not in healthy plasma (H). CNA analysis from Nanopore sequencing will be
compared to this parallel analysis, based on this shallow genome-wide lllumina sequencing of
off-targets. For a set of samples we will also perform shallow wgs on tumor DNA from FFPE to
evaluate/validate the ichorCNA, although cfDNA may be considered more faithful to reality.

Aim 3: BC study for detection, subtype classification, drug response and toxicity.

Aim 3a: Collect and sequence non-cancer controls: We will collect 30 healthy controls which
will serve as a baseline and allow us to quantify specificity, sensitivity, and positive predictive value
(PPV) and negative predictive value (NPV) of BC at time of diagnosis. We have already more than
200 healthy women of various age and enthnic background plasma, and continue collection. It is
especially important to age match controls to the extent possible, since methylation changes
during aging. The number 30 was determined based on similar pre-clinical whole-genome cfDNA
sequencing studies [12,13,31], where we would expect to have similar or better sensitivity.

Aim 3b. Collect and sequence neoadjuvant breast cancer patients: Women treated with BC
NAST in HMC will be offered to participate in the study. In women who consent we will draw blood
before biopsy, three times during NAST (before treatment); and prior breast surgery (Fig. 4A). We
aim to collect and sequence 40 BC patients/year for 2 years, to complete sequencing by year 3.
This includes at least 15SHER2+ and 15TNBC cases per year, to allow us to study particular
resistance scenarios of interest (loss of ERBB2 amplification, and global hypomethylation).

Our research is conducted as part of an approved clinical trial "Characterization of genetic
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Figure 4: cfNano study of neoadjuvant breast cancer treatment. (A) Planned time course of blood for diagnosis and
collections at timepoints TO-T4. (B) Expected subtypes based on previous patient profiles. (C)
Example of a similar timecourse of neoadjuvant treatment from our earlier cfDNA methylation study treatment of BC,
(reproduced from Moss, Zick et al. Annals Onc. 2020.)

performing over 500
breast biopsies a year. Dr. Zick’'s group has collected and banked plasma samples for cfDNA
analysis for the past 10 years, an effort involving a study coordinator, nurse practitioner, and lab
assistant who process and link biospecimens to clinical data in a RedCap research database.

Aim 3c. Evaluate detection of known breast cancer CNA markers: Different types of cancer
have different relative contributions of single-nucleotide mutations vs. copy number alterations to
oncogenesis. These have been described as M-class cancers dominated by mutations and
C-class cancers dominated by copy number events, and BC is among the prototypical C-class
cancers [41,49]. Along with global RNA expression, global copy number profiles are highly

informative for classifying breast cancer cases into clinically-relevant subtypes [43,44]. Notably,

most ER-/HER2+ cases fall into a single cluster, as do most ER-/HER2- (triple-negative, TNBC). In
a recent long-term BC study, these integrated copy number (IntClust) clusters could identify
subgroups of both ER+ and ER- cases at high risk of relapse up to 20 years after diagnosis, which
improved the prediction of late, distant relapse beyond what is possible with clinical covariates [44].
We expect a significant number of cases of each of the four major clinical subtypes of breast
cancer in our cohort (Fig. 4B). We will call CN segments using ichorCNA [50] and classify cases
based on IntClust clusters, and quantify our ability to make confident assignments. Dr. Zick’s group
routinely performs low-coverage (2x) lllumina whole genome sequencing (IcCWGS) on FFPE
tissues that are banked by the Pathology department to identify CNA. We will obtain and sequence
tumor tissue for as many cases as possible to compare to cfDNA IntClust assignments.

Detection of clinically actionable amplifications, especially ERBB2, is critical for targeted treatment
of BC. In our preliminary Nanopore sequencing, we tested a ERBBZ2-positive colorectal cancer
(CRC) patient, and detected a highly amplified ERBBZ2 by our ichorCNA pipeline (Fig. 1c). Using
ichorCNA, we will analyze our sensitivity to detect ERBB2 amplification and another potentially
targetable amplification, FGFR1, which was found to be amplified in similar numbers of BC
patients as ERBB2 in The Cancer Genome Atlas cohort [49]. The FGFR1 inhibitor Erdafitinib has
been approved for bladder cancer and is currently in a clinical trial for treatment of BRCA [51].
Importantly, we seek to detect anti-HER2 sensitivity in resistance. Therefore, we will evaluate our
ability to call ERBB2 amplification in samples that have residual ctDNA during and after treatment,
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when the total fraction of ctDNA is low and more challenging to analyze. In cases where standard
CNA detection by ichorCNA fails, we believe adding methylation and fragmentomic features can
increase sensitivity. In our cfNano samples, we have observed that proportion of short
mononucleosome fragments (100-150bp) increases within the ERBB2 amplicon, due to the
increased fraction of cancer-derived DNA. The ERBB2 amplicon is generally long enough (200kb)
to detect cancer-specific differentially methylated regions as well as sequence-specific signatures
of global hypomethylation that we developed [28], so that we should be able to define a combined
model of amplification that includes increased read depth overall (ichorCNA), as well as increased
frequencies of cancer-specific fragmentation features (short mononucleosomes) and
cancer-specific methylation. We will quantify our accuracy to call potentially actionable alterations
(ERBB2, FGFR1) using the IcWGS data on matched FFPE samples described above.

Aim 3d: Machine learning classifier of treatment response: Here, we will evaluate the ability of
cfDNA to predict specific endpoints of NAST response. First, we will use cfDNA features to predict
pathological complete response (pCR), both across all cases, and within each of the three major
NAST treatment groups. We will then evaluate the relative contribution of each cfNano feature
(methylation tumor fraction, copy number alterations, and fragmentomic features including length
distribution and fragment-end motifs) by building a regression model that incorporates each
individual feature [13]. Additionally, we will train machine learning classifiers to integrate these
features, using decision trees, random forests, gradient boosting trees, or Support Vector
Machines [52]. Additionally, we will develop fragment-level multimodal classifiers, that will integrate
information about the position of each plasma fragment (e.g. in CNA regions), its methylation
status, its length and end motifs, and calculate the likelihood of this fragment to have been
released from a cancer or a healthy cell. Each classifier will be trained independently for cfNano
data and DNA capture panel data, allowing us to compare the predictive power of the two
techniques, and determine whether they are redundant or complementary.

HER2-positive cases that do not respond well present an opportunity in this study. Importantly, up
to 27% of initially HER2+ cases will be HER2- in resistance [53]. We will have pathology and tumor
IcCWGS for most of the post-NAST tumors, and we will be able to quantify the accuracy of our
cfDNA assays to detect ERBB2 loss during treatment. However, we expect to see cases of
disagreement where cfDNA indicates ERBB2 remains amplified, but intra-tumor heterogeneity
leads to a single point sampling of the tumor to be negative. In one major study, amplifications
found by cfDNA were not found in the matched tumor biopsy in up to 78% of cases [8].
Conclusion: The cfDNA-assisted approach can help guide the treatment plan with a very short
turnaround time, and we will test a well established methylation-based method with a new and
promising point-of-care one. These can assist the physician and patient to choose which treatment
is needed at every time point, by monitoring multiple genomic and epigenomic levels before
treatment failure and adverse events become clinically evident. These methods will also shed light
on the biology tumour resistance and guide new therapeutic strategies. Breast cancer is studied
because it is the most common and best characterised tumour, but this methodology can be
adapted to other treatment settings and tumour types. As new cancer therapeutic options continue
to give hope for patients, the cfDNA guide to choose when and how to use them is at hand.
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