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Abstract. The goal of this course is to provide an introduction to the minimal model program
which aims to study the birational geometry of varieties by constructing for each birational equiv-
alence class a representative which is minimal or canonical in a certain sense.

It is a classical result that for non-rational surfaces there always exists a minimal smooth repre-
sentative, which can be constructed by first resolving singularities of an arbitrary representative, and
then successively blowing down exceptional curves. For rational surfaces, however, this uniqueness
fails, and the different minimal models are connected by so-called Sarkisov links.

Already the case of threefolds is tremendously more difficult – one is forced to allow mildly sin-
gular minimal models and in general there exist many different minimal models connected by flops.
In addition to blowing down divisors and flops, one also has to consider much finer contractions,
called flips, which only alter the geometry in codimension 2 but improve the effective cone of curves
on the model, etc.

In this course we will give an introduction to these methods, along the lines of the book of Kollár
and Mori.

If time permits, we will also discuss some of the more recent great achievements:
1) The construction of canonical models by Hacon, McKernan and others. 2) The boundedness

of Fano varieties by recent Fields medalist Birkar. 3) The homological minimal model program
which seeks to understand birational geometry through derived categories of sheaves and their
semiorthogonal decompositions.

1. Lecture 1:The Enriques classification of surfaces from the viewpoint of MMP

We begin this lecture series by presenting a classical result from the viewpoint of the minimal
model program. Our goal in this first lecture will be Enriques classification of surfaces:

Theorem 1.1. Let S be a nonsingular projective surface over an algebraically closed field k of
characteristic zero. Then the birational classification of S is given by the following table: Here

κpSq pg q a birational representative
´8 0 0 P2

´8 0 ą 0 P1 ˆ C, C a smooth curve of genus q
0 1 0 a K3 surface
0 0 0 an Enriques surface, i.e. the quotient of a K3 surface by a fixed-point-free involution
0 1 2 an Abelian surface
0 0 1 a bielliptic surface, i.e. the étale quotient of a product of two elliptic curves
1 ě 0 ě 0 an elliptic surface, i.e. a surface with an elliptic fibration over a smooth curve
2 ě 0 ě 0 a surface of general type

Table 1. The table of exceptional counterexamples

κpSq is the Kodaira dimension of S, which will be explained shortly, and

pg “ pgpSq “ h0pS,OSpKSqq, the geometric genus of S

q “ qpSq “ h1pS,OSq “ h0pS,Ω1
Sq, the irregularity of S.

All of these integers are birational invariants.
1
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The minimal model program approaches this classification using the following (vaguely stated)
algorithm:

(1) Find a good representative in a given birational equivalence class.
(2) Study the properties of the good representative.
(3) Study the (birational) relation among possibly many choices of the good representatives.
(4) Construct the moduli space of these varities, fixing some discrete invariants like genus or

Chern classes but varying the birational equivalence classes.

For the most part, we will stay within the realm of birational geometry and stick to Steps 1-3 in
these lectures.

1.1. Preliminaries on Cones of curves.

Definition 1.2. Let X be a proper variety. A 1-cycleis a formal linear combination of integral
proper curves C “

ř

aiCi with real, rational, or integral coefficients. A 1-cycle is effective if ai ě 0
for every i. Two 1-cycles C,C 1 are called numerically equivalent if pC ¨Dq “ pC 1 ¨Dq for any Cartier
divisor D. The space of real 1-cycles modulo numerical equivalence form the R-vector space we
denote by N1 pXq. The numerical class of a 1-cycle C is denoted by rCs.

Recall now that the Néron-Severi group NSpXq of X is the set of divisors on X modulo algebraic
equivalence and by [1, Exercises V.1.7] this gives a perfect pairing

N1 pXq ˆ NSpXqR Ñ R.

By the Theorem of the Base of Néron-Severi, this duality is between finite dimenisonal R-vector
spaces whose dimension is called the Picard rank of X and denoted by ρpXq. In characteristic zero
this can be proved easily as in [1, Exercise V.1.8] or when over C using the exponential short exact
sequence and the Lefschetz p1, 1q-theorem.

Definition 1.3. Let X be a proper variety. Set

NEQ pXq “ t
ÿ

airCis : Ci Ă X, 0 ď ai P Qu Ă N1pXq;

NE pXq “ t
ÿ

airCis : Ci Ă X, 0 ď ai P Ru Ă N1pXq;

NE pXq “ the closure of NE pXq in N1 pXq,

where the Ci are proper, integral curves of X. clearly NEQ pXq is dense in NE pXq. The convex

cone NE pXq is called the cone of (effective) curves of X.
For any numerical divisor D, set Dě0 :“ tx P N1 pXq : px ¨ Dq ě 0u (and similarly for ą 0, ď 0,

ă 0) and set DK :“ tx : px ¨ Dq “ 0u. We also use the notation

NE pXqDě0 :“ NE pXq X Dě0,

and similarly for ą 0, ď 0, and ă 0.

Theorem 1.4 (Kleiman’s Ampleness Criterion). Let X be a projective variety and D a Cartier
divisor on X. Then D is ample iff

Dą0 Ą NE pXq zt0u.

Corollary 1.5. Let X be a projective variety and H an ample divisor. Then:

(1) NE pXq does not contain a straight line.
(2) For any constant C ą 0 the set tz P NE pXq : pz ¨ Hq ď Cu is compact.
(3) For any constant C ą 0 there are only finitely many numerical equivalence classes of

effective 1-cycles Z “
ř

aiZi with integral coefficients such that pZ ¨ Hq ď C.
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Proof. To prove (1), we note that intersection with H defines a linear functional on N1 pXq which
is positive on NE pXq zt0u. But a linear functional cannot possibly be positive on a straight line
minus the origin, so NE pXq cannot contain a straight line.

To see the other claims, fix a norm } } on N1pXq and assume to the contrary that WC :“ z P

NE pXq : pz ¨ Hq ď Cu is not compact. Then there is a sequence zi P WC such that }zi} Ñ 8. But
zi{}zi} is a bounded sequence hence a suitable subsequence converges to a point y P NE pXq zt0u.

But as py ¨ Hq “ lim pzi¨Hq

}zi}
“ 0, this contradicts H being ample by Kleiman’s ampleness criterion,

so WC is indeed compact.
Finally, note that integral 1-cycles correspond to a discrete set in N1 pXq, so it has only finitely

many points in any compact set. □

The significance of the cone of curves is the following foundational result of Mori which holds in
the nonsingular case in arbitrary dimension.

Theorem 1.6 (The Cone Theorem [5]). Let X be a nonsingular projective variety.

(1) There are countably many rational curves Ci Ă X such that

0 ă ´pCi ¨ KXq ď dimX ` 1, and NE pXq “ NE pXqKXě0 `
ÿ

i

Rě0rCis.

(2) For any ϵ ą 0 and ample divisor H, of

NE pXq “ NE pXqpKX`ϵHqě0 `
ÿ

finite

Rě0rCis.

Proof. For the proof see [2, Theorem 1.28]. We’ll circle back to the proof and its fundamental ideas
later in the course. □

While the Cone Theorem reveals interesting structure of the cone of curves, the relation with
birational and classical geometry is provided by realization that contractions correspond to extremal
faces of this cone. Recall that a subcone M Ă N of a cone N is called extremal or an extremal face
of N if M satisfies the property that u, v P N and u` v P M imply that u, v P M . A 1-dimensional
extremal subcone is called an extremal ray.

Definition 1.7. Let X be a projective variety and F Ă NE pXq an extremal face. A morphism
contF : X Ñ Z to a normal projective variety Z is called the contraction of F if the following hold:

(1) contF pCq “ point for an irreducible curve C Ă X iff rCs P F ;
(2) pcontF q˚OX “ OZ .

A contraction of a KX -negative extremal face with dimZ ă dimX is called a Mori fiber space.

Remark 1.8. A contraction being a Mori fiber space is equivalent to the condition (i) it being
a morphism with connected fibers onto a normal projective variety of smaller dimension along
with the condition (ii) that all irreducible curves C in a fiber are numerically proportional with
pKX ¨ Cq ă 0.

Remark 1.9. In general not every extremal face can be contracted [2, Example 1.27], and it is
not clear when contF exists. Nevertheless, these two conditions uniquely define contF . Indeed, the
second condition specifies that contF is its own Stein factorization. In particular, the fibers are con-
nected, so the first condition specifies the fibers of contF set-theoretically. The Stein factorization
from the second condition guarantees that this specifies contF as a morphism as well.

Conversely, let g : X Ñ Z be a projective morphism such that g˚OX Ñ Z. Let F be the closed
cone spanned by all rCs such that the integral curve C Ă X is sent ot a poitn by g. Then contF “ g,
so g is a contraction of an extremal face.

Exercise 1.10. Prove why the F above is indeed extremal.
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1.2. Step 1: Running the algorithm for surfaces.

1.2.1. Cone of curves in the surface case.

Theorem 1.11 (Riemann-Roch for surfaces). For a divisor D on a nonsingular projective surface
S, then

ÿ

i

p´1qihipS,OSpDqq “ χpOSpDqq “
1

2
pD ´ KSq ¨ D `

1

12

´

p´KSq
2

` epSq

¯

,

where epSq is the topological Euler characteristic. Here we have use the Noether formula

χpOSq “
1

12

´

p´KSq
2

` epSq

¯

.

Lemma 1.12. If D is a divisor on an integral, proper surface X with pD2q ą 0, then for n " 0
either |nD| ‰ ∅ or | ´ nD| ‰ ∅.

Proof. By Riemann-Roch and Serre duality,

h0pnDq ` h0pKX ´ nDq ě χpnDq “
n2

2
pD2q ´

n

2
pD ¨ KXq ` χpOXq,

h0p´nDq ` h0pKX ` nDq ě χpnDq “
n2

2
pD2q `

n

2
pD ¨ KXq ` χpOXq.

As n Ñ 8, the right-hand side of both inequalities grows quadratically with n. But for n " 0, we
cannot have both h0pKX ´nDq and h0pKX `nDq growing large as the two divisors sum to a fixed
linear system |2KX |. Thus h0pnDq or h0p´nDq grows quadratically with n. □

Corollary 1.13. Let X be an integral, projective surface with an ample divisor H. The set Q :“
tz P N1pXq : pz2q ą 0u has two connected components

Q` :“ tz P Q : pz ¨ Hq ą 0u and Q´ :“ tz P Q : pz ¨ Hq ă 0u.

Furthermore, Q` Ă NE pXq.

Proof. By the Hodge-Index Theorem the intersection form on N1pXq has signature p1, ρpXq ´ 1q

(see [1, Remark V.1.9.1], so in a suitable basis we may write it as x21 ´
ř

iě2 x
2
i . We can even

choose the basis such that rHs has coordinates
´

a

pH2q, 0, . . . , 0
¯

. This gives the two connected

component

Q` “

¨

˝x1 ą

d

ÿ

iě2

x2i

˛

‚ and Q´ “

¨

˝x1 ă ´

d

ÿ

iě2

x2i

˛

‚.

For any rDs P Q, by Lemma 1.12 either nD or ´nD is effective for n " 0 and effective curves have
positive intersection with H. Thue the effective curves in Q are the ones in Q`. □

Lemma 1.14. Let X be an integral and projective surface and C Ă X an irreducible curve. If
pC2q ď 0, then rCs is in the boundary of NE pXq. If pC2q ă 0 then rCs is extremal in NE pXq.

Proof. If D Ă X is an irreducible curve such that pD ¨ Cq ă 0, then D “ C since otherwise their
intersection number would be non-negative as it counts with multiplicity the number of points in
their scheme-theoretic intersection. It follows that

NE pXq “ Rě0rCs ` NE pXqCě0 .

In particular, if pC2q “ 0, then intersection with C is a linear functional which is non-negative
on NE pXq and zero on rCs, so it’s on the boundary. On the other hand, if pC2q ă 0, then
rCs R NE pXqCě0. Thus rCs generates an extremal ray. □

Example 1.15. Let’s see some examples of the cone of effective curves on various surfaces:
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(1) Let X be a minimal ruled surface over a curve B. Then ρpXq “ 2, so NE pXq is a convex
cone in R2 that does not contain a straight line, so it must be generated by its two edges.
Let f be the homology class of the fiber of the P1 fibration X Ñ B and denote by s the
other edge. We know that f is an edge by the previous lemma and the fact that f2 “ 0. If
s2 ă 0, then take a sequence Dn of effective 1-cycles converging to a point of Rě0s. Then
for n " 0 we must have pDnq2 ă 0. It follows that there is an irreducible component En of
SuppDn such that pE2

nq ă 0. It follows that rEns must be extremal by Lemma 1.14. Hence
rEns P Rě0s, so this must be a rational edge as well. If s2 “ 0, then take an irreducible
fiber D other than the a fiber. Then rDs and f span N1pXq. Writing s “ xf ` yD, we see
that

0 “ ps2q “ pxf ` yDq2 “ 2xypf ¨ Dq ` y2pD2q,

from which it follows that s is proportional to pD2qf ´ 2pf ¨ DqD, i.e. Rě0s is a rational
ray.

In either case, the effective cone is rational and agrees with the closure of the positive
cone in the second case.

(2) Let A be an abelian surface with ample divisor H. Since there are no rational curves in
an abelian variety, it follows from the adjunction formula that for an irreducible curve
C Ă A, we must have C2 “ pC ¨ pC ` KAqq “ 2gpCq ´ 2 ě 0, so NE pAq “ Q` the closure
of the positive cone. If ρpAq ě 3 then NE pAq is a round cone. This occurs for example
if A – E ˆ E for some elliptic curve E (see [1, Exercises IV.4.10,V.1.6]). It follows that
every point on the boundary of NE pAq is extremal. Most of these are irrational and don’t
correspond to the class of any curve on A.

(3) A classical example is the cubic surface X Ă P3 which is known to be the blowup of P2

at six points. Thus ρpXq “ 7 and X contains precisely 27 lines L1, . . . , L27 whose classes
generate 27 extremal rays. In fact, one case show that NE pXq “ Rě0L1 ` ¨ ¨ ¨ ` Rě0L27

so NE pXq “ NE pXq is a cone over a finite polyhedron.

1.2.2. Finding a good birational representative. So given a proper irreducible surface S over k, let’s
run this algorithm. Whatever we mean by “good representative”, it is natural that it should be
projective and as nonsingular as possible. So by normalization, Chow’s Lemma [1, Exercise II.4.10],
and resolution of singularities, we may suppose that S is a nonsingular projective surface over k.
Step 1 of the MMP in the surface case is based on repeated application of the Contraction theorem
for surfaces:

Theorem 1.16 (The Contraction Theorem). Let X be a smooth projective surface and R Ă NEpXq

an extremal ray such that pR ¨ KXq ă 0 then the contraction morphism contR : X Ñ Z exists and
is one of the following types:

(1) Z is a smooth surface and X is obtained from Z by blowing up a closed point; in this case
ρpZq “ ρpXq ´ 1.

(2) Z is a smooth curve and X is a minimal ruled surface oer Z; in this case ρpXq “ 2.
(3) Z is a point, ρpXq “ 1, and ´KX is ample. (One can even show that X – P2 in this case,

but it’s harder and not relevant to the main ideas here at the moment.)

Proof. There is an irreducible curve C Ă X such that rCs P R. We prove that the three cases in
the theorem correspond to the sign of pC2q.

Assume first that pC2q ą 0. Then rCs must be an interior point of NEpXq since it’s in the
H-positive component Q` “ tz P NEpXq|pz2q ą 0, pH ¨ zq ą 0u of the positive cone. But
by assumption rCs generates an extremal ray. Thus N1pXq – R. By our further assumption,
pC ¨ KXq ă 0, thus KX is negative on NEpXqzt0u. It follows that ´KX is ample by Kleiman’s
Ampleness criterion Theorem 1.4.
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Now consider the case when pC2q “ 0. Since C is effective, for any ample divisor H we have
pH ¨ Cq ą 0 and thus

h2pX,OXpmCqq “ h0pX,OXpKX ´ mCqq “ 0

for m " 0 (for example for m ą
pKX ¨Hq

pH¨Cq
). It follows that

h0pX,OXpmCqq ě h0 pX,OX pmCqq ´ h1 pX,OX pmCqq “ χ pX,OX pmCqq

“
´pKX ¨ Cq

2
m ` χpOXq ě 2,

so we can decompose the elements of the linear system |mC| into a fixed part and a moveable part.
But as rCs is extremal, any fixed/moveable part is a multiple of C, so there is some m1 " 0 such
that |m1C| has no fixed components, that is it’s base locus must have codimension at least two.
But taking two sections D,D1 P |m1C|, we see that they do not intersect as

pD ¨ D1q “ pm1q2pC2q “ 0.

Thus |m1C| is base-point free. In this case we let contR : X Ñ Z be the Stein factorization of the
morphism corresponding to |m1C|.

Let
ř

aiCi be the decomposition of a fiber of contR. Then
ř

airCis “ rCs P R, and since the
ray R is extremal, we get rCis P R for every i. Thus pC2

i q “ 0 and pCi ¨ KXq ă 0. The adjunction
formula tells us that

´2 ď 2papCiq ´ 2 “ pCi ¨ pCi ` KXqq “ pCi ¨ KXq ă 0,

so that Ci is an irreducible smooth curve isomorphic to P1 and pCi ¨ KXq “ ´2. Thus

´2 “ pC ¨ KXq “

´

ÿ

aiCi ¨ KX

¯

“ ´2
ÿ

ai,

which shows that every fiber is an irreducible and reduce curve, isomorphic to P1. It follows that
X is a minimal ruled surface over Z.

Finally, assume that pC2q ă 0. Then the adjunciton formula tells us that

´2 ď 2papCq ´ 2 “ pC ¨ pC ` KXqq “ pC2q ` pC ¨ KXq ď ´1 ` pC ¨ KXq ă ´1,

which gives that C is a p´1q-curve, isomorphic to P1. In this case we let contR be the contraction
provided by the Castelnuovo contraction theorem. □

Theorem 1.17 (Castelnuovo Contraction Theorem,[1, Theorem V.5.7]). If C is a curve on a
nonsingular projective surface X with C – P1 and pC2q “ ´1, then there eists a morphism f : X Ñ

X0 to a nonsingular projective surface X0 and point p0 P X0 such that f is the blowup of X0 at the
point p0 and C is the corresponding exceptional curve.

Theorem 1.18 (“Running the MMP”). Let X be a smooth projective surface. There is a sequence
of contractions X Ñ X1 Ñ ¨ ¨ ¨ Ñ Xn “ X 1 such that X 1 satisfies exactly one of the following
conditions:

(1) KX 1 is nef;
(2) X 1 is a minimal ruled surface over a curve C;
(3) X 1 – P2.

Proof. We start with our smooth projective surface X. If KX is nef, then we can stop. Otherwise, if
KX is not nef, then by the Cone Theorem we can choose a KX -negative extremal ray R Ă NE pXq.
By the Contraction Theorem, Theorem 1.16, we get a contraction contR : X Ñ Z. There are two
possibilities. If dimX “ dimZ, then we let X1 “ Z and repeat the proceedure with X1. As
ρpX1q “ ρpXq ´1, this will eventually terminate. Otherwise, the second two cases of Theorem 1.16
tell us that we may take X “ X 1 as in cases (2) and (3) of this theorem. □
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Definition 1.19. If X 1 is nef above, then X 1 is called a minimal model of X. It turns out that in
this case the morphism X Ñ X 1 is unique, thus X 1 is determined by X.

The variety X 1 will be our good representative. In the case of minimal models, we must investi-
gate htese using more refined tools to fill out the Enriques classification.

Exercise 1.20. This exercise will walk you through proving Castelnuovo’s Criterion for Rational-
ity : Let S be a nonsingular projective surface. Then S is birational to P2 iff

h1pS,OSq “ h0pS,OSp2KSqq “ 0.

We note that these are birational invariants. One direction is clear then, since P2 has these invari-
ants. We break up the reverse implication into steps:

(1) Prove that if h1pS,OSq “ h0pS,OSp2KSqq “ 0, then KS is not nef.
(2) Apply the MMP. What can you get as possible end results?

1.3. Step 2: Properties of Minimal Models in Dimension 2.

Definition 1.21. Let S be a nonsingular projective variety. The Kodaira dimension κpSq of S is
defined to be

κpSq “ κpS,KSq :“
#

´8 if H0pS,OSpmKSqq “ 0, @m P N,
`

tran.degC
À

mě0H
0 pS,OS pmKSqq

˘

´ 1 if H0 pS,OS pmKSqq ‰ 0 for some m P N.

Similarly, for any divisor D we can define κpS,Dq and for a singular variety T , the Kodaira dimen-
sion is defined to be that of a desingularization.

Proposition 1.22. (1) The Kodaira dimension is a birational invariant.
(2) The Kodaira dimension can alternatively be defined as ´8 or

max
mPN

tdimΦ|mKS | pSqu,

where Φ|mKS | : S 99K P is the rational map induced by the linear system |mKS |.
(3) [3, Corollary 2.1.38] There exist m0 P N and α, β ą 0 such that

αmκpSq ď h0 pS,OS pmm0KSqq ď βmκpSq,@m P N.

(4)

κpSq “ 0 ðñ h0 pS,OS pmKSqq “ 0 or 1, @m P N, and h0pS,OSpmKSqq ‰ 0 for some m P N

Remark 1.23. From this result it is clear that the Kodaira dimension satisfies

κpSq P t´8, 0, 1, . . . ,dimSu

Proposition 1.24. If ϕ : X Ñ Z is a Mori fiber space in dimension two, then

H0pX,OXpmKXqq “ 0, @m P N.

That is, κpXq “ ´8.

Proof. Suppose to the contrary that for some m P N we have an effective D P |mKX | ‰ ∅. We can
take a curve C that is contained in a fiber of ϕ but not in D.1 Then

0 ą pmKX ¨ Cq “ pD ¨ Cq ě 0,

a contradiction. □

1Otherwise D would contain all the fibers and thus be all of X.
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Proposition 1.25 (Effective Pluricanonical Divisor on Minimal Models in Dim 2). Let X be a
minimal model in dimension two. Then κpXq ě 0, i.e.

H0pX,OXpmKXqq ‰ 0 for some m P N.

Theorem 1.26 (Hard Dichotomy Theorem of MMP for surfaces). Let S be a nonsingular projective
surface. Then the end result of MMP starting from S is a minimal model (respectively a Mori fiber
space) iff κpSq ě 0 (respectively κpSq “ ´8).

Proof. This follows from the birational invariance of the Kodaira dimension, Propositions 1.24
and 1.25, and Theorem 1.18. □

Proposition 1.27 (Semiample fibrations,[4, Proposition 1-2-16],[3, Theorem 2.1.27]). Let D be a
Cartier divisor on a normal projective variety X such that the linear system |mD| is a base-point
free for all sufficiently large m P N. Let Φ|mD| : X Ñ Z 1 be the morphism assicoated to |mD|, and

X
Φ
ÝÑ Z

Ψ
ÝÑ Z 1 its Stein factorization [1, Corollary III.11.15]. Then

(1) Φ is a morphism with connected fibers onto a normal projective variety Z;
(2) pD ¨ Cq “ 0 for a curve C Ă X iff C is in a fiber of Φ;
(3) Φ˚pOSq “ OZ ;
(4) D “ Φ˚H for some ample Cartier divisor H on Z;
(5) Φ coincides with Φ|mD| for any sufficiently large m P N.

Moreover, Φ is characterized by condition (2) along with either (1) or (3) (they’re really equivalent).

This sounds very much like our contraction theorem (of which it is a special case) and we want
to apply it to the Cartier divisor KX . To do so, we need to know that some multiple of KX is
base-point free. This is precisely the statement of the surface case of the so-called Abundance
Conjecture for minimal models:

Theorem 1.28 (Abundance Theorem). Let S be a minimal model in dimension 2. Then |mKS |

is base-point free for sufficiently divisible and large m P N.

Theorem 1.29 (Iitaka Fibration in dimension 2). Let S be a minimal model in dimension 2. There
is a morphism

Φ: S Ñ Scan

agreeing with Φ|mKS | for sufficiently divisible and large m P N and such that

(1) Φ is a morphism with connected fibers onto a normal projective variety Scan,
(2) for any curve C Ă S

ΦpCq “ pt. ô pKS ¨ Cq “ 0,

(3) mKS “ Φ˚pHq for some ample Cartier divisor H on Scan,
(4) κpSq “ dimScan.

Properties (1) and (2) characterize Φ: S Ñ Scan, which is called the Iitaka fibration of S onto its
canonical model.

Proof. From the Abundance Theorem it follows that |mKS | is base-point free for some m P N.
Thus by Proposition 1.27 appled to D “ KS we get the morphism with properties (1)-(3), and (4)
follows from Proposition 1.22. □

Exercise 1.30. Set R :“
À

mě0H
0pS,OSpmKSqq. It has the natrual structure of a graded C-

algebra and is called the canonical ring of the nonsingular projective surface S. Show that R is
finitely generated as a C-algebra and that Scan – ProjR. Observe that R is a birational invariant,
so Scan is indeed canonically determined by only the birational equivalence class of the surface.

1.4. The Enriques classification revisited. We start with a nonsingular integral projective
surface S over C and run the MMP on S.
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1.4.1. κpSq “ ´8. If κpSq “ ´8, then by Theorem 1.26, the end result will be a Mori fiber
space in dimension two ϕ : S1 Ñ Z, i.e. a minimal ruled surface over a smooth curve Z or P2 (with
Z “ SpecC). See [1, Section V.2] for a reveiw, but in the first case, one shows using Tsen’s theorem
that ϕ has a section which forces it to be isomorphic to π : PpEq Ñ Z for a rank two vector bundle
E on Z. Trivializing E over a Zariski open set U Ă Z, we see that S1 (and thus S) is birational to
Z ˆ P1, so we may take this as our birational representative in this first case. Observe that

pgpSq “ pgpS1q “ pgpZ ˆ P1q “ 0, qpSq “ qpS1q “ qpZ ˆ P1q “ gpZq.

Thus we may differentiate according to these invariants. Observe that if qpSq “ 0 as well then
P1 ˆP1 is indeed birational to P2, so the two invariants vanishing correspond to the same birational
class as required.

1.4.2. κpSq ě 0. If κpSq ě 0, then running the MMP we must reach a minimal model Smin by
the Hard Dichotomy Theorem, Theorem 1.26. So we may assume from now on that S is minimal.
By the Abundance Theorem, Theorem 1.28, there is a morphism Φ: S Ñ Scan onto the canonical
model.

Lemma 1.31 (Kodaira’s Lemma). Let S be a minimal model in dimension two. Then κpSq “

dimS “ 2 iff K2
S ą 0.

Proof. Since S is a minimal model, KS is nef, and thus it is big iff K2
S ą 0. But KS being big is

precisely the condition κpSq “ 2. □

When κpSq “ 2 “ dimScan, S is said to be of general type. If KSmin is nef but not ample, then
Scan is necessarily singular and Φ is the minimal resolution of singularities. The singularities of
canonical models, the so-called canonical singularities, can be explicitly classified in dimension two.
These are precisely the ordinary double-point singularities with the corresponding ADE classifica-
tion.

When κpSq “ dimScan “ 1, generic smoothness [1, Corollary III.10.7] tells us that the general
fiber F of Φ: Smin Ñ Scan is nonsingular and connected. Moreover, the adjunction formula tells
us that

gpF q “ pKS ` F q ¨ F ` 1 “ pKS ¨ F q ` pF ¨ F q ` 1 “ 0 ` 0 ` 1 “ 1.

Thus Φ is an elliptic fibration and it can be analyzed further by through Kodaira’s study of the
possible degenerate fibers of an elliptic fibration. Similarly, the possible multiple fibers can be
studied using Kodaira’s Canonical Bundle Formula for Elliptic fibrations.

Finally, if κpSq “ dimScan “ 0, the Iitaka fibration doesn’t tell us anything. But note that
K2

S “ 0 from Kodaira’s Lemma. Moreover, we claim that χpOSq ě 0. Indeed, by Noether’s
formula

12χpOSq “ K2
S ` epSq “ epSq “ 2pb0 ´ b1q ` b2 “ 2p1 ´ b1q ` b2.

By Serre duality and Hodge theory, however, it follows that

χpOSq “ 1 ´ h1pS,OSq ` h2pS,OSq “ 1 ´ h1pS,OSq ` h0pS,OSpKSqq,

b1 “ h1pS,Cq “ h1pS,OSq ` h0pS,Ω1
Sq “ 2h1pS,OSq.

Therefore,

8χpOSq “ 12χpOSq ´ 4χpOSq “ 2 ´ 2b1 ` b2 ´ 4
`

1 ´ h1pS,OSq ` h0pS,OSpKSqq
˘

“ ´2 ´ 2b1 ` 4h1pS,OSq ` b2 ´ 4h0pS,OSpKSqq “ ´2 ´ 4h0pS,OSpKSqq ` b2

ě ´2 ´ 4h0pS,OSpKSqq ě ´6

since h0pS,OSpKSqq ď 1 by Proposition 1.22. Thus the integer χpOSq is at least ´6
8 “ ´3

4 ą ´1,
which gives χpOSq ě 0. This puts strong restrictions on the invariants of S:

0 ď χpOSq “ 1 ´ h1pS,OSq ` h0pS,OSpKSqq ď 2 ´ h1pS,OSq.
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There are five numerical possibilities:

(1) h1pS,OSq “ 2, h0pS,OSpKSqq “ 1, an Abelian surface.
(2) h1pS,OSq “ 1, h0pS,OSpKSqq “ 1, no such surfaces.
(3) h1pS,OSq “ 1, h0pS,OSpKSqq “ 0, a bielliptic surface.
(4) h1pS,OSq “ 0, h0pS,OSpKSqq “ 1, a K3 surface.
(5) h1pS,OSq “ 0, h0pS,OSpKSqq “ 0, an Enriques surface.

Exercise 1.32. Show that case (2) above really doesn’t happen geometrically.

This completes the Enriques classification from the point of view of the Minimal Model Program.
To summarize, the Cone and Contraction Theorems let us reduce to two birational classes of
particularly simple type P2 or P1 ˆ C or a minimal model. The Effective Pluricanonical Divisor
and Abundance Theorems let us analyze the Iitake fibration to provide extra geometric information
except when κ “ 0 which imposes strict numerical constraints.

1.5. What goes wrong in higher dimension? Let’s suffice our brief look ahead with a look
at dimension three and the comment that the Cone theorem still holds in higher dimension. The
crucial step in dimension three is then the Contraction Theorem due to Mori:

Theorem 1.33 ([5]). Let X be a nonsingiular projective threefold over C and contR : X Ñ Y the
contraction of a KX-negative extremal ray R Ă NE pXq. The following is a list of all possibilities
for contR:

(1) Exceptional case: dimY “ 3, contR is biraitonal and there are five types of behavior
near the contracted surface:
(a) E1:contR is the blowup of a smooth curve in the smooth threefold Y .
(b) E2:contR is the blowup of a smooth point in the the smooth threefold Y .
(c) E3:contR is the blowup of an ordinary double point of Y (in local analytic coordinates

looks like x2 ` y2 ` z2 ` w2 “ 0).
(d) E4:contR is the blowup of a point of Y locally analytically given by x2`y2`z2`w3 “

0.
(e) E5:contR contracts a smooth P2 with normal point Op ´2q to a point of multiplicity 4

on Y locally analytically the quotient of C3 by the involution px, y, zq ÞÑ p´x,´y,´zq.
(2) C: (Conic bundles) dimY “ 2 and contR is a fibration whose fibers are plane conics

with smooth general fibers.
(3) D: (Del Pezzo fibtrations):dimY “ 1 and general fibers of contR are Del Pezzo surfaces.
(4) F: (Fano varieties):dimY “ 0, ´KX is ample and hence X is a Fano variety.

Cases C,D,F are nice structure results, especially since the possible smooth Fano threefolds have
been completely classified by Iskovkich. The Cases E1 and E2 are the obvious three dimensional
analogue of Case (1) of Theorem 1.16, but cases E3, E4, and E5 involve the singular variety Y . To
proceed further with the MMP as we would like, we would want to apply Theorem 1.33 again, but
it doesn’t apply to singular Y . So we’re gonna have to deal with singular varieties. The question
is how singular?
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