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Introduction
Parameter estimation is a fundamental task in statistics that involves estimating the values of unknown
parameters in a statistical model based on observed data. There are several methods for parameter
estimation including maximum likelihood estimation, Bayesian estimation, method of moments, and more.
The accurate estimation of these parameters is critical for making reliable predictions, identifying patterns,
and drawing meaningful conclusions from data. In our course, we used parameter estimation, among other
things, for sequence alignment algorithms, Markov chains and HMM (particularly CPG islands), and
more. This essay aims to provide an overview of parameter estimation and specifically Bayesian parameter
estimation in contrast to maximum likelihood estimation and the Frequentist approach. The essay will
begin by defining key terms and concepts, followed by introducing a general Bayesian estimator that
relies on a selected loss function. It will explore various loss functions and their corresponding Bayesian
estimators, before discussing the MLE and frequentist approach. Finally, a comparison between the two
approaches will be made.

Definitions and Setting
Before beginning, one needs to define some useful terms - a parametric model or parametric family of
distributions is a set of probability functions P of a random variable X, that depends (and differs from
each other) only on a set of parameters θ. Meaning, each value of θ yields a probability function. There
are a few common notions for such probability functions - Pθ (x) , P (x; θ) , P (x | θ) which differ depending
on the chosen statistical paradigms (frequentist vs. Bayesian, see Comparison section). In this essay we
will be using P (x | θ). Each probability function P (x | θ) needs to be a legal distribution (non-negative
and sum to one). Since it depends only on θ, one needs a parameter space Θ, which corresponds to
all values of θ that make Pθ a legal distribution. An example of a parametric family of distributions is
the binomial distribution which depends on (1) n - the number of trials and (2) p - the probability to
succeed in each Bernoulli trial. Hence, in this case θ = (p, n) and Θ = [0, 1]× N.
The setting of the problem is that we have n independent1 and identically distributed (iid) samples or
training set D = {x1, ..., xn} drawn from a fixed distribution P (· | θ). P is a parametric family of
distributions, that depends on θ which is unknown. We want to estimate θ from the given samples. The

1Note that they are independent only for a fixed θ, meaning the tosses are conditionally independent given θ
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BAYESIAN APPROACH

estimator of θ will be marked as θ̂ and is a function of the given observations. Notice that θ̂ is a random
variable and thus one can investigate its characteristics (distribution, expectation, etc.).
Another important thing to mention before diving in, is Bayes’ theorem -

posterior︷ ︸︸ ︷
P (θ | D)

Bayes
Rule=

likelihood︷ ︸︸ ︷
P (D | θ) ·

prior︷ ︸︸ ︷
P (θ)

P (D)︸ ︷︷ ︸
evidence /

marginal likelihood

where the reasoning behind the names is that the prior represents the probability distribution of the
parameters before observing the data, the likelihood represents the probability of observing the data given
a particular set of parameter values, the posterior represents the probability distribution of the parameters
after the fact (after observing the data), and the evidence is the probability of the observations (the
evidence).
Our goal through the next few sections will be to describe different possible estimators - first from the
Bayesian approach, and then from the frequentist approach.

Bayesian Approach
After laying all the settings, the question of “how would we choose an estimator?” arises, or “what function
of D should we choose?”. To answer this we define a loss function L (also known as a cost function or an
objective function) which is used to measure the difference between the true and estimated parameters.
Given a loss function, we would like to choose an estimator that would be “good”. A reasonable possibility to
determine what is “good” is to choose an estimator which minimizes the loss while taking into consideration
all the possible values of θ,D. Formally,

θ̂∗ = argmin
θ̂

Eθ,D

[
L
(
θ̂ (D) , θ

)]
= argmin

θ̂

∑
θ

∑
D

L
(
θ̂ (D) , θ

)
· P (D, θ) (1)

The outcome of this choice (equation 1) results in the Bayesian estimator2. As we will later discuss, the
Bayesian approach uses prior knowledge and observed data to infer the probability distribution of the
parameters (we can already see it since P (D, θ) = P (D | θ)P (θ)).
Notice that by choosing θ̂∗ (D) = argminθ̂ Eθ|D

[
L
(
θ̂ (D) , θ

)]
for each given D, we receive the minimum

of equation 1. This means that if one has a group of samples, and wants to use the “best estimator”,
there is no need to go though all the other possible sample groups to find the estimator, but it is enough
to look at the current group only.

2This is often referred to also as Bayesian decision making and is directly linked to risk analysis.
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Proof. Consider any estimator θ̂, then

Eθ,D

[
L
(
θ̂∗ (D) , θ

)]
=

∑
θ

∑
D

L
(
θ̂∗ (D) , θ

)
· P (D, θ) =

∑
θ

∑
D

L
(
θ̂∗ (D) , θ

)
· P (D) · P (θ | D)

=
∑
D

P (D)
∑
θ

L
(
θ̂∗ (D) , θ

)
· P (θ | D) =

∑
D

P (D) · Eθ|D

[
L
(
θ̂∗ (D) , θ

)]
≤

∑
D

P (D) · Eθ|D

[
L
(
θ̂ (D) , θ

)]
=

∑
θ

∑
D

L
(
θ̂ (D) , θ

)
· P (D, θ)

= Eθ,D

[
L
(
θ̂ (D) , θ

)]
■

Now, given some sample group we have a general Bayesian estimator θ̂∗ (D) = argminθ̂ Eθ|D

[
L
(
θ̂ (D) , θ

)]
that depends on the chosen loss function. We will attend different possible loss functions and investigate
the outcome of choosing the estimator based on them. We will discover that they all rely on the posterior,
which is in accordance (due to Bayes rule) with the Bayesian approach that relies on the prior:

L1 Loss Function

This loss is defined by the L1 norm, that is L1

(
θ̂ (D) , θ

)
=

∥∥∥θ̂ (D)− θ
∥∥∥
1
=

∑
i

∣∣∣θ̂i (D)− θi

∣∣∣. When

choosing this loss function, we get θ̂L1
(D) = medianP (θ | D), the posterior median. In other words, if

Θ = R then
θ̂L1�
−∞

P (θ | D) dθ =
∞�
θ̂L1

P (θ | D) dθ (see full proof in the Appendix).

L2 Loss Function (Squared Error)

Here we will use the L2 loss function which is defined L2

(
θ̂ (D) , θ

)
=

∥∥∥θ̂ (D)− θ
∥∥∥
2
=

√∑
i

(
θ̂i (D)− θi

)2

.
Notice that this loss amplifies bigger mistakes and is useful , among other things, since it is differentiable.
By choosing this loss function, we get the following Bayesian estimator θ̂L2

(D) = Eθ|D [θ] which is the
posterior mean. Meaning, the expected value of θ given the samples.

Proof. As shown before, the optimal Bayesian estimator is

θ̂L2
(D) = argmin

θ̂
Eθ|D

[
L2

(
θ̂ (D) , θ

)]
= argmin

θ̂

∑
θ

P (θ | D)L2

(
θ̂ (D) , θ

)
= argmin

θ̂

∑
θ

P (θ | D)
∥∥∥θ̂ (D)− θ

∥∥∥
2
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to find the minimum we will take the derivative w.r.t. θ̂

∑
θ

P (θ | D) 2
(
θ̂ − θ

)
= 2 ·

∑
θ

P (θ | D)
(
θ̂ − θ

)
!
= 0

∑
θ

θ̂ · P (θ | D) =
∑
θ

θ · P (θ | D)

θ̂
∑
θ

·P (θ | D)︸ ︷︷ ︸
=1

=
∑
θ

θ · P (θ | D)

θ̂ =
∑
θ

θ · P (θ | D) = Eθ|D [θ]

■

Kronecker’s Delta Loss Function (MAP Estimator)

In this case, we would use an “everything or nothing” loss. Meaning we would have zero loss if θ̂ = θ,
and a loss of one otherwise. Mathematically - L

(
θ̂ (D) , θ

)
= 1 − δθ̂,θ. By choosing this loss we get

θ̂MAP (D) = argmaxθ P (θ | D), where MAP stands for Maximum A Posteriori. This estimation makes
sense since we are choosing the estimator with the highest probability given the samples.

Proof. Notice that in the case of Kronecker’s delta loss function

Eθ|D

[
L
(
θ̂ (D) , θ

)]
= Eθ|D

[
1− δθ̂,θ

]
=

∑
θ

(
1− δθ̂,θ

)
P (θ | D) =

∑
θ ̸=θ̂

P (θ | D) = 1− P
(
θ̂ | D

)

And so, the optimal Bayesian estimator is

θ̂MAP (D) = argmin
θ̂

Eθ|D

[
L
(
θ̂ (D) , θ

)]
= argmin

θ̂

{
1− P

(
θ̂ | D

)}
= argmin

θ̂

{
−P

(
θ̂ | D

)}
= argmax

θ̂

{
P
(
θ̂ | D

)}
■

Summary

Choosing different loss functions resulted in different Bayesian estimators that depend on the posterior -

Loss Function Estimator Meaning

L1 :
∥∥∥θ̂ (D)− θ

∥∥∥
1

medianP (θ | D) posterior median

L2 :
∥∥∥θ̂ (D)− θ

∥∥∥
2

Eθ|D [θ] posterior mean

1− δθ̂,θ argmaxθ P (θ | D) posterior mode
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Relaying on the posterior in our estimator is reasonable, as it is connected to the question - “Given our
samples, which θ is most probable?”.

Frequentist Approach
MLE

Remember that our training set is defined - D = {x1, ..., xn}. Looking at how the MAP estimator behaves
as the number of observations grows, one can notice that the significance of the prior (or log of the prior)
goes down -

θ̂MAP (D) = argmax
θ

P (θ | D)
Bayes
Rule= argmax

θ

P (D | θ) · P (θ)

P (D)︸ ︷︷ ︸
constant

= argmax
θ

P (D | θ) · P (θ)

log is
monotonic= argmax

θ
{log (P (D | θ) · P (θ))} = argmax

θ
{logP (D | θ) + logP (θ)} (2)

= argmax
θ

{logP ({x1, ..., xn} | θ) + logP (θ)} i.i.d
= argmax

θ

{
log

n∏
i=1

P (xi | θ) + logP (θ)

}

= argmax
θ

{
n∑

i=1

logP (xi | θ) + logP (θ)

}

This implies that the prior is somewhat negligible and one can consider maximizing only the first term3.
So we define the maximum likelihood estimator (or MLE) to be

θ̂ML (D) = argmax
θ

P (D | θ)

Observe that this is a reasonable estimator since it is connected to the question - “From which θ are the
samples most likely to have come?”.
Another connection between the MLE and MAP is by assuming a uniform prior. In this case. we get

θ̂MAP (D) = argmax
θ

P (θ | D) = argmax
θ

P (D | θ) · P (θ)︸ ︷︷ ︸
constant

( same for
all θ )

= argmax
θ

P (D | θ) = θ̂ML (D) (3)

Overall, these two transitions from MLE to MAP (equations 2, 3) emphasize the difference between the
Bayesian and the Frequentist approach. While the Bayesian relies on prior knowledge and updates it with

3Another reason to use MLE is that it minimizes the cross entropy and the KL-divergence with respect to the true
model.
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new data, the Frequentists focus on the frequency of observed data and the probability of observing that
data.

General

In the Frequentist approach, θ is considered fixed (not a probabilistic entity) and unknown. The goal
is to use collected data D to estimate θ. The frequentist perspective can be further divided into two
distinct categories: classical and probabilistic, however, we will not provide a detailed explanation of their
differences. The MLE method is a key tool in this approach, as it provides a way to estimate the unknown
parameters based on the observed data.

Comparison
The philosophical differences between the Bayesian and frequentist approaches to statistics are rooted in
their contrasting views of θ and their impact on parameter estimation. In the Bayesian approach, θ is
considered a random variable, allowing for the calculation of P (θ) and P (D | θ). On the other hand, the
classical or frequentist approach treats θ as a fixed constant with a single true value. The classical approach
distinguishes between parameters, which cannot be repeatedly measured to determine their prevalence, and
random variables, which can be investigated to determine their probability distribution. Thus, θ is regarded
as a parameter of a distribution (not a random variable like in the Bayesian approach and unlike D), and
the appropriate notation is P (D; θ) or Pθ (D).
This contrasting view of probability impacts parameter estimation of the different approaches. Bayesian-
ism incorporates prior knowledge into the analysis, allowing for the derivation of posterior probability
distributions for the parameters of interest. These distributions provide a range of plausible values for the
parameter, and the most likely value can be selected (mean, median, or mode). This approach allows for
the quantification of uncertainty in parameter estimates, as well as the incorporation of subjective beliefs
and expert opinions. In contrast, frequentism utilizes large-sample theory and asymptotic properties of
estimators. This method is often used to derive point estimates, such as the maximum likelihood estimate
(MLE) or the method of moments estimate, that represent a single value of the parameter that is most
consistent with the data.
The main criticism of Bayesian analysis is that its reliance on prior knowledge can be problematic, as the
choice of prior distribution can significantly impact the resulting inferences and may be based on subjective
or unreliable information. In addition, Bayesian analysis can be computationally complex, particularly for
high-dimensional problems, and may be difficult to interpret and communicate to non-experts.
On the other hand, the frequentist approach relies solely on the data to make inferences and does not
allow for the explicit incorporation of prior information or beliefs about the parameters of interest. This
can be limiting in situations where prior knowledge or external information is available and can inform the
analysis. Additionally, frequentist analysis is often criticized for its reliance on point estimates, which do
not provide information about the uncertainty surrounding the parameter estimate. Confidence intervals
can be used to estimate the range of plausible values for the parameters, but they do not provide a
complete distribution of the parameter estimates or the posterior probability.
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Frequentist analysis can also suffer from issues with computational complexity and model selection. Complex
models with many parameters can be challenging to fit and require a large amount of data to achieve
sufficient power. Model selection procedures can also be prone to overfitting and may not generalize well
to new data.
Overall, both approaches have their strengths and weaknesses, and the choice between them depends on
the availability of prior knowledge, the context of the problem, the nature of the data, and the researcher’s
goals and philosophical stance on probability and inference.
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APPENDIX

Appendix
L1 Loss Function is the Posterior Median

Proof. We will prove that for the L1 loss function - L1

(
θ̂ (D) , θ

)
=

∥∥∥θ̂ (D)− θ
∥∥∥
1

we get that the Bayesian

estimator is - θ̂L1
(D) = medianP (θ | D). We will prove this for the case θ ∈ R,Θ = R:

Eθ|D

[
L1

(
θ̂ (D) , θ

)]
=

∞�

−∞

L1

(
θ̂ (D) , θ

)
P (θ | D) dθ =

∞�

−∞

∣∣∣θ̂ (D)− θ
∣∣∣P (θ | D) dθ

=

θ̂(D)�

−∞

(
θ̂ (D)− θ

)
P (θ | D) dθ +

∞�

θ̂(D)

(
θ − θ̂ (D)

)
P (θ | D) dθ

therefore

θ̂L1 (D) = argmin
θ̂

Eθ|D

[
L1

(
θ̂ (D) , θ

)]
= argmin

θ̂


θ̂(D)�

−∞

(
θ̂ (D)− θ

)
P (θ | D) dθ +

∞�

θ̂(D)

(
θ − θ̂ (D)

)
P (θ | D) dθ


Now, we will take the derivative w.r.t θ̂, and compare to zero. To do this, we will use the Leibniz integral
rule on both parts of the integral and get -
∂
∂θ̂

(� θ̂(D)

−∞

(
θ̂ (D)− θ

)
P (θ | D) dθ

)
=

(
θ̂ (D)− θ̂ (D)

)
P
(
θ̂ (D) | D

)
dθ+

� θ̂(D)

−∞ P (θ | D) dθ =
� θ̂(D)

−∞ P (θ | D) dθ

∂
∂θ̂

(�∞
θ̂(D)

(
θ − θ̂ (D)

)
P (θ | D) dθ

)
= −

(
θ̂ (D)− θ̂ (D)

)
P
(
θ̂ (D) | D

)
dθ−

�∞
θ̂(D)

P (θ | D) dθ =
�∞
θ̂(D)

P (θ | D) dθ

And combining them we receive

(1) + (2) =

θ̂(D)�

−∞

P (θ | D) dθ +

∞�

θ̂(D)

P (θ | D) dθ
!
= 0

θ̂(D)�

−∞

P (θ | D) dθ =

∞�

θ̂(D)

P (θ | D) dθ

This result means that θ̂L1 needs to hold
θ̂L1�
−∞

P (θ | D) dθ =
∞�
θ̂L1

P (θ | D) dθ which is the definition of the

posterior median as expected. ■
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