
Algorithms in Computational Biology

Genetic Algorithms

Or Amar – 311166169

January 2021

Introduction

Genetic algorithms (GA) are a family of computational models inspired by evolution. Genetic algorithms

are commonly used in solving optimizations and search problems, using methods and assumptions from

the field of biology such as mutation, selection and crossovers.

GAs were first described by John Holland in the 1960s and further developed by Holland, his students,

and colleagues in the 1960s and 1970s. Holland wanted to develop ways in which the mechanisms of

natural adaptation and selection might be imported into the field of computer science. Later on, in his

book “Adaptation in Natural and Artificial Systems” from 1975, Holland presented the GA as an abstract

form of evolution and set the framework for adaptation under GAs.

Setting the framework

I will now describe shortly the terms used in GA’s and their meaning. In order to do so, let us imagine we

are facing an optimization problem and we wish that our algorithm evolve to have better results. To

have an evolutionary process, we need an initial population and some change from one generation to

the next. In GAs the “population” consists of candidate solutions, sometimes referred as individuals or

phenotypes. Each individual has a set of properties (sometimes referred as chromosomes or genotype)

which are exposed to mutation and alternation processes. Usually, the evolutions starts from a

population of randomly selected individuals, then each iteration of the algorithm represents the current

population which is the “generation”. At every generation we evaluate the individuals by looking at the

values they emit in the objective function our problem. This value is sometimes referred as the “fitness”

of an individual. The fittest individuals are stochastically selected from the current generation and the

“genome” of those individuals is modified through processes of mutation and recombination.

We can summarize the terms in the following table:

Table 1 - GA terminology

The canonical genetic algorithm

As mentioned before, the first step in the implementation of any genetic algorithm is to generate an

initial population, let us denote the population size with 𝑁. In the canonical genetic algorithm, each

individual of this population will be represented with a binary string of length L which corresponds to

the problem encoding. This string is the genotype/chromosome. In most cases the initial population is

generated randomly. Now that we have the initial population, each string of individual is then evaluated

and assigned a fitness value. It is useful to distinguish between the evaluation function (the objective

function) and the fitness function used by a genetic algorithm. The objective function provides a

measure of performance with respect to a particular set of parameters and is independent of the

evaluation of any other string. The fitness function on the other hand is always defined with respect to

other members of the current population and the fitness function transforms that measure of

performance of the objective function into an allocation of reproductive opportunities.

In the canonical GA we normalize the fitness as follows: for every individual 𝑖 in the population, let 𝑓𝑖 be

the evaluation by the objective function of the 𝑖′𝑡ℎ string. Let 𝑓 ̅be the average evaluation of all the

individuals at the current population. Therefore, the fitness of the 𝑖′𝑡ℎ individual is: 𝐹𝑖 ≔
𝑓𝑖

𝑓̅ . There are

other ways to assign the fitness of individuals in the population, but we will not discuss them here.

The canonical GA process

We can view the execution of the GA as a two-stage process. Starting with current population, the first

stage is when selection is applied to the current population and as a result, we create a new

intermediate population. The next stage is applying recombination and mutation to create the next

generation. On the next iteration in the GA, we will use the new population which was formed as our

current population. In Fig.1 we can see a sketch of an entire iteration.

 Selection
(Duplication)

 Recombination
(Crossover)

 Mutation

Individual 1 Individual 1 (A) 1st Offspring (1 × 2) A

Individual 2 Individual 2 (B) 2nd Offspring (1 × 2) B’ (Mutant)

Individual 3 Individual 2 (C) 1st Offspring (2 × 4) C

Individual 4 Individual 4 (D) 2nd Offspring (2 × 4) D

… … … …

… … … …

… … … …

Current
Generation t

 Intermediate
Generation t

 Next Generation t+1
(before mutations)

 Next
Generation t+1

Figure 1 – Process of the canonical algorithm - one generation is broken down into a selection phase, a recombination phase and

a mutation phase. This is an illustrated example because strings are assigned to slot randomly

We will first consider the construction of the intermediate population from the current population. After

calculating 𝐹𝑖 for all the individuals in the current population, selection is carried out. In the canonical

GA, the fitness of individuals affects the probability that individuals will continue to the intermediate

generation (The higher the fitness it is more likely to be pulled to the intermediate generation). There

are a number of ways to do selection. We will explain one selection process in which we use the

remainder stochastic sampling. For each individual 𝑖, we use the calculated value 𝐹𝑖. When 𝐹𝑖 = 𝑥 > 1

we will directly place ⌊𝑥⌋ copies in the intermediate population and the remainder (𝑥 − ⌊𝑥⌋) will serve us

as the probability to place another copy in the intermediate population. Meaning, after directly placing

the integer value of each individual in the intermediate population, all the individuals (including those

with 𝐹𝑖 < 1.0) place additional copies in the intermediate population with a probability corresponding

to the fractional portion of 𝐹𝑖. Remainder stochastic sampling is most efficiently implemented using a

method known as stochastic universal sampling. Assume that the population is laid out in random order

as in a pie graph, where each individual is assigned space on the pie graph in proportion to fitness. Next

an outer roulette wheel is placed around the pie with 𝑁 equally spaced pointers. A single spin of the

roulette wheel will now simultaneously pick all 𝑁 members of the intermediate population. This method

is also resulting an unbiased selection.

After selection has been carried out the construction of the intermediate population is complete, and

recombination and mutation can occur. We pair the individuals (represented in strings) and a crossover

is applied to randomly paired strings with a probability denoted 𝑃𝑐. With probability 𝑃𝑐 'recombine' the

pair of strings to form two new strings that are inserted into the next population (notice that in some

scenarios the new strings might be similar to their “parents” in the intermediate population).

After recombination, we can apply a mutation operator. For each bit in the population, mutate with

some low probability 𝑃𝑚. There are several ways to apply mutation and we will not cover them in this

paper, but a mutation is a change of a bit in a string corresponding to individual.

After the process of selection, recombination and mutation is complete, the next population can be

evaluated. A GA is typically iterated for around 50 to 500 or more generations or until a criterion is

matched. The entire process is often called a “run.” At the end of a run, there are often one or more

highly fit chromosomes in the population. Since randomness plays a large role in each run, two runs will

probably produce different detailed behavior. Therefore, GA researchers often report statistics (such as

the best fitness found and generation at which best fitness was found) averaged over many different

runs of the GA on the same problem.

Pseudo code

generate initial population

compute fitness of each individual

WHILE True:

/* produce new generation */

FOR
𝑁

2
:

select two individuals from old generation for mating

/* fitted individuals are more likely to be picked */

recombine the two individuals to give two offspring

add mutations /* by mutation factor */

compute fitness of the two offspring

insert offspring in new generation

IF population has converged OR threshold reached: /* depends on implementation */

 break

return fittest individual / average fitness of last generation / string of individual /* depends on problem */

Illustrated example GA – mouse in a maze problem (search problem)

Consider the mouse in a maze problem illustrated in Figure 1. The mouse needs to find a sequence of no

more than 𝑥 steps that will move the mouse from the entrance to the cheese. As shown in the figure,

each move (Forward, Backward, Left, or Right) is represented by two bits, so a sequence of 𝑥 moves can

be represented by a bit string of length 2𝑥. Now we can initialize a population of 𝑁 possible strings

(individuals) of size 2𝑥. The fitness of a specific sequence can be calculated by letting the mouse follow

the sequence, and then measuring the number of steps between its final position and the cheese (the

exit) where the smaller the distance, the higher the fitness of the sequence. Maximum fitness is attained

if the mouse reaches the cheese in 𝑥 steps or less.

Figure 2 - Mouse in a maze problem in which one candidate solution is a bit string encoding for a series of “forward,”
“backward,” “left,” and “right” moves. WLOG, 00 – forward, 01 – backward, 10 – left, 11 – right.

Why does it work?

At a very general level of description, GAs are converging towards good building blocks of solutions in a

parallel fashion. The idea is that good solutions are often made from good building blocks. To formalize

the idea of building blocks came the notion of schemas. A schema is a set of bit strings made of ‘0’s ‘1’s

and ‘*’s (a wild card). A schema is said to be of order 𝑦 if the schema has 𝑦 defined bits (‘0’s or ‘1’ but no

‘*’). Schema can denote both subset of strings represented by a template or the template itself, and the

meaning should be clear from context. Not every possible subset of length−𝐿 bit strings can be

described as a schema. There are 2𝐿 possible bit strings of length 𝐿 and thus 22𝐿
 possible subsets of

strings, however there are only 3𝐿 possible schemas. However, that the central tenet of traditional GA

theory is that schemas are the building blocks which the GA processes effectively. Let there be a bit

string of size 𝐿 so that string is an instance of 2𝐿 unique schemas. For example, the string 11 is an

instance of **, 1*, *1 and 11 schemas. For the general case, let there be 𝑁 strings of size 𝐿, they are

instances of between 2𝐿 (all the strings are identical) and 𝑁 × 2𝐿 (all the strings are unique) different

schemas. The meaning of this is that in evaluating a population of 𝑁 strings, the GA is implicitly

estimating the average fitnesses of all schemas that are present in the population which known as

implicit parallelism. The guiding principle is that the degree of parallelism does not depend on the

population size, but on the much larger schemas whose instances are present. The effect of selection is

to gradually bias the sampling procedure toward instances of schemas with higher average fitness.

In order to calculate the dynamics of this sample biasing, we will act as follows. Let 𝑠 be a schema with

at least 1 instant present in the population at time (or iteration) t. let 𝑁(𝑠, 𝑡) be the number of instances

of 𝑠 at time 𝑡 and let �̅�(𝑠, 𝑡) be the observed average fitness of the instances of 𝑠 at time 𝑡. Now we

wish to compute the expected number of instances of 𝑠 at the next generation, denoted with

𝔼(𝑁(𝑠, 𝑡 + 1)). let 𝐹𝑖 be as mentioned in “The canonical genetic algorithm” in page 2 and for simplicity

we will now ignore the effects of crossovers and mutations. Let 𝑖 ∈ 𝑠 (individual 𝑖 is an instance of 𝑠)

then:

𝔼(𝑁(𝑠, 𝑡 + 1)) = ∑ 𝐹𝑖

𝑖∈𝑠

=
�̅�(𝑠, 𝑡)

𝑓̅(𝑡)
⋅ 𝑁(𝑠, 𝑡)

Equation 1

Adding crossover and mutation, the right side of Eq. 1 can be modified to give lower bound on the

expected value. At a single-point crossover event we will say that schema 𝑠 “survived” under the event if

one of the offspring is also an instance of schema 𝑠. Let us denote the surviving of 𝑠 under a crossover

event with 𝑆𝑐(𝑠) so we can bound 𝑆𝑐(𝑠) as follows:

𝑆𝑐(𝑠) ≥ 1 − 𝑃𝑐(
𝑑(𝑠)

𝐿−1
),

where 𝑃𝑐 mentioned under “The canonical genetic algorithm” in page 3 and 𝑑(𝑠) is the distance

between the outermost defined bits in the schema 𝑠 (also known as the defining length). Crossovers

occurring within the defining length can destroy 𝑠 and therefore we get the bounded equation above. In

other words, the probability of survival under crossover is higher for shorter schemas. We can do a

similar thing to calculate the effects of mutation. Let us set 𝑃𝑚 to be as mentioned in page 3, then we

will denote the probability that schema 𝑠 will survive under mutation with 𝑆𝑚(𝑠). Therefore:

𝑆𝑚(𝑠) = (1 − 𝑃𝑚)𝑜(𝑠),

Where 𝑜(𝑠) is the order of 𝑠 as mentioned before, which means that for schema 𝑠 to survive mutation it

needs to survive (not change) its first defined bit (𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 1 − 𝑃𝑚) and its second defined

bit and so on, 𝑜(𝑠) times.

Now we can apply these effects to Eq. 1 and get:

𝔼(𝑁(𝑠, 𝑡 + 1)) ≥
�̅�(𝑠, 𝑡)

𝑓̅(𝑡)
⋅ 𝑁(𝑠, 𝑡) ⋅ (1 − 𝑃𝑐 ⋅ (

𝑑(𝑠)

𝐿 − 1
)) ⋅ ((1 − 𝑃𝑚)𝑜(𝑠))

Equation 2 - The Schema Theorem

Eq. 2 can be interpreted to say that short, low-order schemas, with relatively high fitness will receive

exponentially increasing number of samples (representatives) over time because their schemas have

lower chances of disrupting effects by the crossover and mutation and their fitness increases by a factor

of
�̅�(𝑠,𝑡)

𝑓̅(𝑡)
 at each generation.

Notice that this is a lower bound, albeit some crossover events and mutation might increase the fitness

of an individual, however in this scenario the schema 𝑠 might not survive (and the schema of the

offspring 𝑠′ will have a better fitness). Mutation serves a great deal with not losing genetic diversity as it

forces toward genetic drift-mutation equilibrium and preventing fixation.

Applications of Genetic Algorithms

While the aforementioned algorithm is rather simple, there a many variations on this basic algorithm.

Here are some applications of GAs which can be used in problems and models from scientific and

engineering fields:

- Optimization: numerical and combinatorial optimization problems such as circuit layout and job-

shop scheduling.

- Automatic programming: evolving computer programs for specific tasks, and designing

computational structures, such as cellular automata and sorting networks.

- ML: classification and prediction tasks such as the prediction of weather or protein structure.

GAs can also evolve aspects of particular machine-learning systems, such as weights for neural

networks or rules for learning classifier systems.

- Ecological models: modeling ecological phenomena such as biological arms races, host-parasite

co-evolution, symbiosis, and resource flow in ecologies

- Immune system models: modeling aspects of the natural immune system including somatic

mutation during an individual’s lifetime and the discovery of multi-gene families during

evolutionary time.

- Economic models: modeling processes of innovation, development of bidding strategies, and

emergence of economic markets.

Criticism

Genetic algorithms are surely elegant and easy to comprehend but there are several criticisms of the use

of GAs comparing to other optimization algorithms:

- The evaluation of the fitness function in complex problems may be very expensive and this

process occurs repeatedly in GAs. For some real-world problems, a single evaluation may

require several hours or even days. In these cases, it may be more efficient to make an exact

evaluation and use an approximated fitness.

- GAs struggle with dynamic data sets, as genomes tend to converge in processes of genetic drift

and the remaining solutions may no longer be valid for later data. To tackle this issue, several

methods have been proposed to increase the genetic diversity, e.g., by increasing the

probability of mutation when the solution quality decreases drastically.

- For specific problems, better solutions might be found using other algorithms.

Conclusion

GAs are a method which is adaptive to its environment due to their modifying abilities taken from the

field of evolution. In general, genetic algorithms can be found solving complex, real world problems,

however, several improvements must be made in order to make GAs more generally applicable.

References

1. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.

2. Yadav, P. K., & Prajapati, N. L. (2012). An overview of genetic algorithm and modeling.

International Journal of Scientific and Research Publications, 2(9), 1-4.

3. Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1,

fundamentals. University computing, 15(2), 56-69.

4. Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 2,

research topics. University computing, 15(4), 170-181.

5. Mitchell, M. (1995). Genetic algorithms: An overview. Complexity, 1(1), 31-39.

