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1 Introduction
Phylogenetic trees are used in biology to represent the evolutionary relationships among a group of taxa. The Neighbor
Joining (NJ) algorithm is a popular method for reconstructing such trees, and was introduced by Saitou and Nei in
1987 [9]. The NJ algorithm is based on a distance matrix that provides the pairwise distances between all the taxa in
the group. In this paper, we will describe the ideas behind the NJ algorithm and least squares methods, and show how
they relate to the Balanced Minimum Evolution (BME) algorithm introduced by Desper and Gascuel in [2].

2 The Neighbor Joining Algorithm

2.1 The Algorithm
The NJ algorithm is a hierarchical clustering algorithm that constructs a phylogenetic tree by iteratively joining the
closest pairs of nodes. The algorithm starts with a distance matrix D that provides the pairwise distances between all
taxa. The matrix D is assumed to satisfy a few conditions. First of all, the distance between a taxon and itself is zero.
Secondly the distances are symmetric, i.e. ∀i, j : Dij = Dji. Finally, all distances must be non-negative.

The NJ algorithm constructs a binary tree that represents the evolutionary relationships among the taxa. The leaves
of the tree correspond to the taxa, and the internal nodes correspond to hypothetical ancestors that are inferred to have
existed at various points in the past. The length of each branch in the tree represents the amount of evolutionary change
that has occurred along that branch. The NJ algorithm is a fast and efficient method for constructing phylogenetic
trees, and has been shown to perform well on a wide range of data sets. The full details of the algorithm can be seen
in Algorithm 1. Note that the formula that is being used is that of Studier and Keppler [11], which was shown in [3] to
be equivalent to that of Saitou and Nei [9].

Algorithm 1 Neighbour Joining Algorithm
Let D be the n× n distance matrix
Initialize T as a star tree with n leaves
si ←

∑n
j=1 dij for all i ∈ [n]

while T has more than 2 leaves do
Find the pair of nodes i and j in T with the smallest Qij value, where Qij = (n− 2)dij − si − sj
Create a new node k and add edges (k, i) and (k, j) to T
Update the distances dkm for all m /∈ {i, j}: dkm = 1

2 (dim + djm − dij)
Update the distance of dik: dik = 1

2dij +
1

2(n−2) (
∑n

l=1 dil −
∑n

l=1 djl). Similarly for djk
Remove nodes i and j from T
Update sk ←

∑n
j=1 dkj

end while
Let the remaining node in T be the root
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The NJ algorithm has time complexity O(n3), where n is the number of taxa. The computation of the n × n
matrix Q requires O(n2) operations. The search for the smallest value of Qij requires O(n2) operations, and the
computation of the new distances requires O(n2) operations. The algorithm must be repeated n− 2 times, so the total
time complexity is O(n3).
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Figure 1: Illustration of one step of the NJ algorithm

2.2 Consistency of the Algorithm
After the algorithm’s publication, a fundamental question had arisen as to its consistency. Specifically, the consistency
of the algorithm is the question if it can accurately reconstruct a tree given that the distances are perfect. A few proofs
have been given, and we will present an elegant one that was provided by Bryant [1].

Theorem 2.1. If D is a distance matrix of T and i, j minimize Qij , then i and j are neighbours in T .

Proof. First note that ∀i ∈ [n], if we add some constant amount K to each distance dij then the only effect on Q is
that we subtract 2K

n−2 from Quv for all u, v ∈ T . This does not change the ordering of pairs with respect to Q, and also
allows us to assume that every external edge in T has weight zero.

Now, for each internal nodes u, v we will have that su > sv if and only if there are more taxa closer to v than
u. Thus, the maximum of all s’s would be for some vertex v∗ that is adjacent to exactly one internal edge. Since all
external edges have weight 0, all leaves i adjacent to v∗ have si = sv∗ .

Now to the proof: Suppose i, j are not neighbours, and let a, b be leaves adjacent to v∗. Since i, j are not neigh-
bours, some internal edges separates them and we have dij > 0 = dab. Additionally, by the way we chose v∗ we get
si ≤ sv∗ = sa and sj ≤ sv∗ = sb. Therefore, Qij > Qab, and i, j do not minimize Q.
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Figure 2: Illustration of the proof
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3 The Least Squares Methoed

3.1 Ordinary Least Squares
Another approach for phylogenetic tree reconstruction is the least squares method [6]. The goal is to find a tree that
minimizes the sum of squared differences between the observed distances and the expected distances under a given
model of evolution. The ordinary least squares (OLS) criterion can then be formulated as:

minimize
∑
i<j

(dij − eij)
2

where eij is the actual distance between taxa i and j in the original tree.
However, this approach has a few disadvantages. Firstly, OLS is sensitive to outliers, and errors or other factors

that lead to distances much larger or smaller than expected can result in inaccurate or misleading results. Secondly,
OLS assumes that evolutionary rates are constant across all branches of the tree, which is often not the case in practice.
Neglecting this variation can lead to biased or inconsistent estimates of the tree topology and branch lengths. Lastly,
OLS requires a complete distance matrix with no missing values, which can be difficult to obtain in practice. OLS
also does not offer a principled way to handle missing data, which can again lead to biased or inconsistent estimates
of the tree topology and branch lengths.

3.2 Weighted and Constrained Least Squares
Weighted Least Squares (WLS) is a modification of the least squares method that assigns weights to the observed
distances based on their estimated variances. The weighted least squares criterion can be expressed as

minimize
∑
i<j

(dij − eij)
2

dij

Weighted least squares can reduce the influence of observations with large variances and can improve the accuracy
of the reconstructed tree.

A common problem of both OLS and WLS is that they can lead to negative weights on the branches of the
constructed trees. Therefore, the constrained least squares method incorporates additional constraints on the branch
lengths - that they must be non-negative. For this formulation we get the following criterion:

minimize
∑
i<j

(dij − eij)
2 subject to eij ≥ 0

Constrained least squares can improve the accuracy of the reconstructed tree by incorporating additional informa-
tion or assumptions about the evolutionary process. However, the constraints can make the optimization problem more
difficult to solve and can lead to biased or inconsistent estimates if the constraints are not appropriate for the data.

4 The Relationship Between NJ and LS

4.1 Tree Length and Balanced Minimum Evolution
All least squares approaches assume that the evolutionary relationships among the sequences can be represented by a
tree with the fewest number of changes in the data. This assumption is called “minimum evolution” (ME), and is not
assumed a-priori in the NJ algorithm. At first it was thought that the NJ algorithm minimizes the OLS criterion, and
therefore is also an ME method. However, simulations such as in [8, 5] showed that this was not the case, as shorter
trees (in OLS terms) exist for some runs of NJ, even though they are less accurate.

Additionally, Gascuel and Steel describe in [4] that a run of the NJ algorithm minimizes the OLS criterion on the
original tree, but not on an intermediate tree during the run of the NJ algorithm, where there are some agglomerated
nodes. These discoveries led researches to believe that despite NJ’s good performance, it does not optimize a natural
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property of phylogenetic trees such as maximum likelihood or parsimony (which OLS is closely related to). Under-
standing the criteria that are being optimized is vital in these applications, and so a deeper understanding of the NJ
algorithm was required to properly justify its use as well as understand its good performance.

It turns out that the NJ algorithm actually minimizes a different tree length property, which we will now introduce.
As an example, consider the following tree:

a

d b

c

Figure 3: A tree with circular tree length estimate

We can calculate the tree’s length by summing its branch lengths along a cyclical traersal of the tree. For this tree,
the length will be:

ℓ =
1

2
(dab + dbd + ddb)

We traversed the tree in a cyclic manner, so we counted all of the edges twice and therefore multiply by 1
2 . However,

since there may be a few ways to describe the “same” tree, this estimate isn’t good enough. Therefore, Semple and
Steel [10] suggest the following general formula:

ℓ(T ) =
∑
{i,j}

wijdij (1)

where the weight wij is calculated as follows: consider all interior nodes on the path from i to j. Count the number of
outgoing branches from these nodes, and divide 1 by that number.

This is the general case of Pauplin’s [7] formula for binary trees, where wij is equal to 1
2 to the power of the

number of interior nodes between i and j. Desper and Gascuel [2] show that the NJ algorithm actually minimizes the
tree length in the sense of Pauplin’s formula. They also design an algorithm that utilizes this approach, which they call
Balanced Minimum Evolution (BME). Finally, they show that this algorithm achieves better results than both NJ and
the least squares approaches. We will now prove that NJ acts as a greedy algorithm for minimizing tree length.

4.2 Neighbour Joining Minimizes Total Tree Length
Theorem 4.1 (from [2]). The Neighbour Joining algorithm selects at each step as neighbors that pair of current taxa
which most decreases the whole tree length, as computed using the generalized Pauplin formula.

Proof. Consider trees like T and T ′ in Figure 1. Each leaf is a subtree that is either a single taxon in the original data
set or was created by a previous step of the algorithm. Denote by A,B the two subtrees that are joined in the step of
the algorithm between T and T ′, and by X,Y two other subtrees that are connected to the central node. Let r be the
degree on the central node, and a, b, x, y be original taxa in the respective subtrees A,B,X, Y .

From Equation (1) we get:

ℓ(T )− ℓ(T ′) =
∑
{i,j}

(wij − w′
ij)dij
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where wij and w′
ij are computed in T and T ′, respectively. These differ only if i and j are not within a single subtree

A,B,X or Y . So the previous equation becomes:

ℓ(T )− ℓ(T ′) =
∑
{a,b}

(wab − w′
ab)dab +

∑
{a,x}

(wax − w′
ax)dax+∑

{b,x}

(wbx − w′
bx)dbx +

∑
{x,y}

(wxy − w′
xy)dxy

As we stated before, since this is a binary tree we can use Pauplin’s formula and get:

ℓ(T )− ℓ(T ′) = ((r − 1)−1 − 2−1)DT
AB + ((r − 1)−1 − (2(r − 2))−1)

∑
X

(DT
AX +DT

BX)

+((r − 1)−1 − (r − 2)−1)
∑

{X,Y }

DT
XY

where DT
AB is the distance matrix for the nodes in A,B, and similarly for DT

AX , DT
BX , DT

XY .
Now denote by I, J subtrees that are leaves, and we get:

ℓ(T )− ℓ(T ′) =
1

2
DT

AB +
1

2(r − 2)

∑
I ̸=A

DT
AI +

∑
I ̸=B

DT
BI


+((r − 1)−1 + (r − 2)−1)

∑
{I,J}

DT
IJ

The last term is indpendent of A,B and the other terms should look familiar - they correspond to the criterion that
appears in Studier and Keppler’s version of the NJ algorithm. Thus we can see that at each step of the algorithm, NJ
greedily minimizes this notion of tree length.

5 Conclusion
In summary, the Neighbor Joining (NJ) algorithm is a popular algorithm for reconstructing phylogenetic trees from
distance matrices. The algorithm iteratively builds a binary tree by joining pairs of nodes with the smallest values of a
certain criterion. The NJ algorithm is fast and produces reasonably accurate trees, but has been shown to have some
limitations. On the other hand, least squares approaches have also been used to reconstruct phylogenetic trees, and for
some time these approaches where thought to be equivalent.

Pauplin [7] derived a formula for the length of a balanced binary tree in terms of the pairwise distances between
its leaves, and it was shown that the NJ algorithm can be viewed as an iterative algorithm for finding the balanced tree
with minimum length. The Balanced Minimum Evolution (BME) algorithm, introduced by Desper and Gascuel [2],
is a variant of the minimum evolution principle that takes into account the balanced nature of phylogenetic trees. The
BME algorithm uses the formula derived by Pauplin to compute the length of a balanced tree, and has been shown
to converge to the balanced tree with minimum length that is consistent with the input distance matrix. Additionally,
they have shown that the NJ algorithm actually optimizes the criterion of tree length, and not that of least squares.
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