Question

Prove that if the system $A\bar{x} = \bar{b}$ has more than one solution, then it has infinitely many. <u>Guidance</u>: Suppose that \bar{u} and \bar{v} are two different solutions. Use them to construct infinite different solutions for the system.

Example solution

Let $\bar{u} \neq \bar{v}$ be two vectors that satisfy the equation:

$$A\overline{v} = A\overline{u} = \overline{b}$$

Let $\overline{w} = \overline{u} - \overline{v}$. We see that:

$$A\overline{w} = A(\overline{u} - \overline{v}) = \overline{b} - \overline{b} = 0$$

Now, let $k \in \mathbb{R}$ be some scalar. So:

$$A(\bar{v} + k\bar{w}) = \bar{b} + 0 = \bar{b}$$

Since k can be any scalar, we found infinite solutions to the equation.

<u>Note 1</u>: Notice that \overline{w} is not the zero vector. It's some vector pointing in some direction. <u>Note 2</u>: The solution we found agrees with the general case we saw in class – the set of infinite solutions to an inhomogeneous system is made of a particular solution plus a solution to the homogeneous system (in this case, \overline{w} is such a solution).