Linear Algebra for Neuroscience (76992)

Exercise 07 – The inner product and orthogonality

1. Let
$$\bar{v} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$
, $\bar{w} = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$.

- 1.1. Calculate the projection of \bar{v} onto \bar{w} .
- 1.2. Calculate the projection of \overline{w} onto \overline{v} .
- **2.** Let $\bar{u}, \bar{w} \in \mathbb{R}^2$ be two orthogonal vectors. For this question only, assume that you don't know that orthogonal vectors satisfy $\bar{u}^T \bar{w} = 0$.

Use the Pythagorean theorem to show that $\bar{u}^T \bar{w} = 0$.

- **3.** Let \bar{x} be an $n \times 1$ vector and A be a $n \times n$ matrix. What is the result of $\bar{x}^T A \bar{x}$? If it is a vector or matrix, write down the general term of the result. If it is a scalar, write down the result. You should use the Σ notation.
- **4.** Let A be a matrix. Show that any vector $\bar{x} \in \text{ker}(A)$ is orthogonal to any vector $\bar{a} \in rowsp(A)$ (remember, the row space of A is the space spanned by the rows of the matrix A).