Linear Algebra for Neuroscience (76992)

Exercise 08 – Orthogonality

1. Consider the following three vectors:

$$\bar{v}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \bar{v}_2 = \begin{pmatrix} 1\\-3\\2 \end{pmatrix}, \bar{v}_3 = \begin{pmatrix} 5\\-1\\-4 \end{pmatrix}$$

- **1.1.** Show that they are pairwise orthogonal.
- **1.2.** Show that they form a basis of \mathbb{R}^3 .
- **1.3.** Let $\bar{u} = \begin{pmatrix} 4 \\ 14 \\ -9 \end{pmatrix}$. Write down \bar{u} as a linear combination of $\bar{v}_1, \bar{v}_2, \bar{v}_3$. Use the fact that the given

basis is an orthogonal basis.

2. Cauchy-Shcwartz inequality

The Cauchy-Shcwartz inequality states that for any two vectors $\overline{v}, \overline{w}$:

 $\langle \bar{v}, \bar{w} \rangle^2 \leq \langle \bar{v}, \bar{v} \rangle \langle \bar{w}, \bar{w} \rangle$ or equivalently: $|\langle \bar{v}, \bar{w} \rangle| \leq ||\bar{v}|| ||\bar{w}||$ Here one bar means "absolute value" and two bars mean "vector norm". Verify the Cauchy-Schwartz inequality for $\bar{u} = (1,0,3,2)^T$, $\bar{v} = (4,1,0,1)^T$.

3. For this question, please watch the video "Lease squares – a concrete example" on moodle. In this video, we saw a concrete example for the "best" solution of an overdetermined system:

$$\hat{x} = (A^T A)^{-1} A^T \bar{b}$$

We found \hat{x}_1 and \hat{x}_2 by solving a simple system of two equations. Now, solve the system directly: **3.1.** Find $(A^T A)^{-1}$.

- **3.2.** Calculate \hat{x} .
- Let V = {v
 ₁, v
 ₂, ..., v
 _k} be a set of nonzero pairwise-orthogonal vectors in ℝⁿ.
 4.1. Prove that V is linearly independent.
 4.2. Assume that k = n. Do the vectors in V form a basis for ℝⁿ?
- 5. Let A be a real symmetric matrix $(A^T = A)$. A is called **positive definite** if for any nonzero vector $\bar{x} \in \mathbb{R}^n$ it is true that:

$$\bar{x}^T A \bar{x} > 0$$

- **5.1.** True or false? All eigenvalues of a positive definite matrix are positive.
- **5.2.** What can you say about the angle between a vector before (\bar{x}) and after transformation by a positive definite matrix $(A\bar{x})$? Note that \bar{x} is a general vector, not necessarily an eigenvector.

Bonus question

In class we saw that for an underdetermined system $A\bar{x} = \bar{b}$, the projected vector \hat{b} is:

$$\hat{b} = \underbrace{A(A^T A)^{-1} A^T}_{the \ projection} \bar{b}$$

We can simplify this result and get:

$$\hat{b} = A(A^{-1}(A^{T})^{-1})A^{T}\bar{b}$$
$$\hat{b} = \underbrace{AA^{-1}}_{I}\underbrace{(A^{T})^{-1}A^{T}}_{I}\bar{b}$$
$$\hat{b} = \bar{b}$$

But this makes no sense, because this means that the projected vector is just the original vector. Something in this "proof" is flawed. Can you spot the flaw?