Linear Algebra for Neuroscience (76992)

Exercise 10 – Complex vectors and matrices & Vector spaces

Complex vectors and matrices

1. As we saw in class, a general rotation-scaling matrix has the following form:

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

- **1.1.** Let λ be one of the complex eigenvalue of A. Show that the scaling factor that A induces is $|\lambda|$ (the magnitude λ).
- **1.2.** Assume that A rotates by 10° counter-clockwise, and scales by 1.5. We define:

$$\bar{v}(t) = A\bar{v}(t-1)$$

Let $\bar{v}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Draw a schematic representation of $\bar{v}(0)$, $\bar{v}(1)$, $\bar{v}(5)$, $\bar{v}(9)$, $\bar{v}(10)$, $\bar{v}(36)$.

- **1.3.** Repeat the previous question, but this time with $|\lambda| = 1$.
- **1.4.** Repeat the previous question, but this time with $|\lambda| < 1$.

Vector spaces

- 2. True/false? Justify your answers.
 - **2.1.** Let A be a real $m \times n$ matrix. rowsp(A) is a subspace of \mathbb{R}^m .
 - **2.2.** Let A be a real $m \times n$ matrix. rowsp(A) is a subspace of \mathbb{R}^n .
 - **2.3.** The solution set for a nonhomogeneous system $A\bar{x} = \bar{b}$ is a subspace of \mathbb{R}^n .
 - **2.4.** The set of real 2×2 matrices with zero determinant ($\{A \in M_{2 \times 2} | \det(A) = 0\}$) is a subspace of the space of real 2×2 matrices.
- **3.** Let *V* be the vector space of real 2×2 matrices. Let *U* be the subspace of real symmetric 2×2 matrices.
 - **3.1.** Find dim(*U*).

To prove your answer, find a basis for U. Make sure to prove that it is indeed a basis (remember the two properties that every basis needs to fulfill).

4. Let $P_2(x)$ be the vector space of polynomials of degree smaller or equal to 2. The following polynomials form a basis for this space:

$$p_1 = x + 1$$
$$p_2 = x - 1$$
$$p_3 = x^2 - 2x + 1$$

Let $\bar{v} = 2x^2 - 5x + 9$ be a vector in this space. Find the coordinate vector (i.e., the coefficients) of \bar{v} with respect to this new basis.